GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Cauquoin, Alexandre; Jean-Baptiste, Philippe; Risi, Camille; Fourré, Elise; Landais, Amaëlle (2016): Modeling the global bomb-tritium transient signal with the AGCM LMDZ-iso: a method to evaluate aspects of the hydrological cycle. Journal of Geophysical Research: Atmospheres, 121(21), 12612-12629, https://doi.org/10.1002/2016JD025484
    Publication Date: 2023-07-19
    Description: Improving the representation of the hydrological cycle in Atmospheric General Circulation Models (AGCMs) is one of the main challenges in modeling the Earth's climate system. One way to evaluate model performance is to simulate the transport of water isotopes. Among those available, tritium (HTO) is an extremely valuable tracer, because its content in the different reservoirs involved in the water cycle (stratosphere, troposphere, ocean) varies by order of magnitude. Previous work incorporated natural tritium into LMDZ-iso, a version of the LMDZ general circulation model enhanced by water isotope diagnostics. Here for the first time, the anthropogenic tritium injected by each of the atmospheric nuclear-bomb tests between 1945 and 1980 has been first estimated and further implemented in the model; it creates an opportunity to evaluate certain aspects of LDMZ over several decades by following the bomb-tritium transient signal through the hydrological cycle. Simulations of tritium in water vapor and precipitation for the period 1950-2008, with both natural and anthropogenic components, are presented in this study. LMDZ-iso satisfactorily reproduces the general shape of the temporal evolution of tritium. However, LMDZ-iso simulates too high a bomb-tritium peak followed by too strong a decrease of tritium in precipitation. The too diffusive vertical advection in AGCMs crucially affects the residence time of tritium in the stratosphere. This insight into model performance demonstrates that the implementation of tritium in an AGCM provides a new and valuable test of the modeled atmospheric transport, complementing water stable isotope modeling.
    Keywords: AERO; Aerological investigations; Africa, Algeria; Astrachan; Australia; Australia1; Australia2; Bikini_Atoll; Bikini Atoll; China; Cloud base height; Cloud top height; COMBINISO; DATE/TIME; Enewetak_Atoll; Enewetak Atoll; Event label; Hiroshima_J; Japan; Johnston_Atoll; Johnston Atoll; Kasachstan; Kiribati; Latitude of event; Longitude of event; Malden_Is; Malden Island; Montebello_Is; Nagasaki_J; NE_Kasachstan; Nevada; Nevada, United States of America; Novaya_Zemlya; Novaya Zemlya; Orenburg; Pacific_Ocean1; Pacific_Ocean2; Pacific Ocean; Quantitative picture of interactions between climate, hydrological cycle and stratospheric inputs in Antarctica over the last 100 years via the combined use of all water isotopes; Reggan; Russia; Trinity_site; Trinity site, New Mexico; Tritium release; Tuamotu1; Tuamotu2; Tuamotu Archipelago; Xinjiang
    Type: Dataset
    Format: text/tab-separated-values, 1464 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-26
    Description: Improving the representation of the hydrological cycle in atmospheric general circulation models (AGCMs) is one of the main challenges in modeling the Earth’s climate system. One way to evaluate model performance is to simulate the transport of water isotopes. Among those available, tritium is an extremely valuable tracer, because its content in the different reservoirs involved in the water cycle (stratosphere, troposphere, and ocean) varies by order of magnitude. Previous work incorporated natural tritium into Laboratoire de Météorologie Dynamique Zoom (LMDZ)-iso, a version of the LMDZ general circulation model enhanced by water isotope diagnostics. Here for the first time, the anthropogenic tritium injected by each of the atmospheric nuclear bomb tests between 1945 and 1980 has been first estimated and further implemented in the model; it creates an opportunity to evaluate certain aspects of LDMZ over several decades by following the bomb tritium transient signal through the hydrological cycle. Simulations of tritium in water vapor and precipitation for the period 1950–2008, with both natural and anthropogenic components, are presented in this study. LMDZ-iso satisfactorily reproduces the general shape of the temporal evolution of tritium. However, LMDZ-iso simulates too high a bomb tritium peak followed by too strong a decrease of tritium in precipitation. The too diffusive vertical advection in AGCMs crucially affects the residence time of tritium in the stratosphere. This insight into model performance demonstrates that the implementation of tritium in an AGCM provides a new and valuable test of the modeled atmospheric transport, complementing water stable isotope modeling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Format: application/zip
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-10-20
    Description: Quantifying the magnitude of post-depositional processes affecting the isotopic composition of surface snow is essential for a more accurate interpretation of ice core data. To achieve this, high temporal resolution measurements of both lower atmospheric water vapor and surface snow iso- topic composition are required. This study presents contin- uous measurements of water vapor isotopes performed in East Antarctica (Kohnen station) from December 2013 to January 2014 using a laser spectrometer. Observations have been compared with the outputs of two atmospheric gen- eral circulation models (AGCMs) equipped with water va- por isotopes: ECHAM5-wiso and LMDZ5Aiso. During our monitoring period, the signals in the 2 m air temperature T , humidity mixing ratio q and both water vapor isotopes δD and δ18O are dominated by the presence of diurnal cycles. Both AGCMs simulate similar diurnal cycles with a mean amplitude 30 to 70 % lower than observed, possibly due to an incorrect simulation of the surface energy balance and the boundary layer dynamics. In parallel, snow surface samples were collected each hour over 35 h, with a sampling depth of 2–5 mm. A diurnal cycle in the isotopic composition of the snow surface is observed in phase with the water vapor, reaching a peak-to-peak amplitude of 3 ‰ for δD over 24 h (compared to 36 ‰ for δD in the water vapor). A simple box model treated as a closed system has been developed to study the exchange of water molecules between an air and a snow reservoir. In the vapor, the box model simulations show too much isotopic depletion compared to the observations. Mix- ing with other sources (advection, free troposphere) has to be included in order to fit the observations. At the snow surface, the simulated isotopic values are close to the observations with a snow reservoir of ∼ 5 mm depth (range of the snow sample depth). Our analysis suggests that fractionation oc- curs during sublimation and that vapor–snow exchanges can no longer be considered insignificant for the isotopic compo- sition of near-surface snow in polar regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...