GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Zakharova, Elena A; Fleury, Sara; Guerreiro, Kévin; Willmes, Sascha; Rémy, Frédérique; Kouraev, Alexei V; Heinemann, Günther (2015): Sea ice leads detection using SARAL/AltiKa altimeter. Marine Geodesy, 38(sup1), 522-533, https://doi.org/10.1080/01490419.2015.1019655
    Publication Date: 2023-01-13
    Description: Sea ice leads play an essential role in ocean-ice-atmosphere exchange, in ocean circulation, geochemistry, and in ice dynamics. Their precise detection is crucial for altimetric estimations of sea ice thickness and volume. This study evaluates the performance of the SARAL/AltiKa (Satellite with ARgos and ALtiKa) altimeter to detect leads and to monitor their spatio-temporal dynamics. We show that a pulse peakiness parameter (PP) used to detect leads by Envisat RA-2 and ERS-1,-2 altimeters is not suitable because of saturation of AltiKa return echoes over the leads. The signal saturation results in loss of 6–10% of PP data over sea ice. We propose a different parameter—maximal power of waveform—and define the threshold to discriminate the leads. Our algorithm can be applied from December until May. It detects well the leads of small and medium size from 200 m to 3–4 km. So the combination of the high-resolution altimetric estimates with low-resolution thermal infra-red or radiometric lead fraction products could enhance the capability of remote sensing to monitor sea ice fracturing.
    Type: Dataset
    Format: application/zip, 1.3 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Preußer, Andreas; Heinemann, Günther; Willmes, Sascha; Paul, Stephan (2016): Circumpolar polynya regions and ice production in the Arctic: Results from MODIS thermal infrared imagery for 2002/2003 to 2014/2015 with a regional focus on the Laptev Sea. The Cryosphere, 10(6), 3021-3042, https://doi.org/10.5194/tc-10-3021-2016
    Publication Date: 2023-09-29
    Description: High-resolution MODIS thermal infrared satellite data are used to infer spatial and temporal characteristics of 17 prominent coastal polynya regions over the entire Arctic basin. Thin-ice thickness distributions (〈 20 cm) are calculated from MODIS ice-surface temperatures, combined with ECMWF ERA-Interim atmospheric reanalysis data in an energy balance model for 13 winter-seasons (2002/2003 to 2014/2015; November to March). From all available MODIS swath-data, (quasi-) daily thin-ice thickness composites are computed in order to derive quantities such as polynya area and total thermodynamic (i.e., potential) ice production. A gap-filling approach is applied to account for cloud and data gaps in the MODIS composites. All polynya regions combined cover an average thin-ice area of 226.6 ± 36.1 x10³ km² in winter. This allows for an average total wintertime accumulated ice production of about 1811 ± 293 km³, whereby the Kara Sea region, the North Water polynya (both 15%), polynyas at the western side of Novaya Zemlya (20%) as well as scattered smaller polynyas in the Canadian Arctic Archipelago (all combined 12%) are the main contributors. Other well-known sites of polynya formation (Laptev Sea, Chukchi Sea) show smaller contributions and range between 2 and 5%. We notice distinct differences to earlier studies on pan-Arctic polynya characteristics, originating in some part from the use of high-resolution MODIS data, as the capability to resolve small-scale (〉 2km) polynyas and also large leads is increased. Despite the short record of 13 winter seasons, positive trends in ice production are detected for several regions of the eastern Arctic (most significantly in the Laptev Sea region with an increase of 6.8 km³/yr) and the North Water polynya, while other polynyas in the western Arctic show a more pronounced variability with varying trends. We emphasize the role of the Laptev Sea polynyas as being a major influence on Transpolar Drift characteristics through a distinct relation between increasing ice production and ice area export. Overall, our study presents a spatially highly accurate characterization of circumpolar polynya dynamics and ice production, which should be valuable for future modeling efforts on atmosphere - sea ice - ocean interactions in the Arctic.
    Keywords: Area; Beaufort shelf; BSH; CAA; Canadian Arctic Archipelago; Cape Bathurst Polynya; CBP; CHU; Chukchi Sea; DATE/TIME; derived from MODIS remote sensing data; East-Siberian Fast-ice; East Siberian Sea; ESF; ESS; Event label; FJL; Franz Josef Land; GLN; Greenland North; KAR; Kara Sea; LAP; Laptev Sea; Latitude of event; Longitude of event; Nares Strait/Lincoln Sea; NEWP; North-East Water polynya; North Water polynya; NOW; NSL; Optional event label; Sea ice production; Severnaya Zemlya North; STO; Storfjorden polynya; SVA; Svalbard archipelago; System Laptev-Sea: Transdrift; SZN; TRANSDRIFT; Western Novaya Zemlya; WNZ
    Type: Dataset
    Format: text/tab-separated-values, 66422 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: The presence of sea-ice leads represents a key feature of the Arctic sea ice cover. Leads promote the flux of sensible and latent heat from the ocean to the cold winter atmosphere and are thereby crucial for air-sea-ice-ocean interactions. We here apply a binary segmentation procedure to identify leads from MODIS thermal infrared imagery on a daily time scale. The method separates identified leads into two uncertainty categories, with the high uncertainty being attributed to artifacts that arise from warm signatures of unrecognized clouds. Based on the obtained lead detections, we compute quasi-daily pan-Arctic lead maps for the months of January to April, 2003–2015. Our results highlight the marginal ice zone in the Fram Strait and Barents Sea as the primary region for lead activity. The spatial distribution of the average pan-Arctic lead frequencies reveals, moreover, distinct patterns of predominant fracture zones in the Beaufort Sea and along the shelf-breaks, mainly in the Siberian sector of the Arctic Ocean as well as the well-known polynya and fast-ice locations. Additionally, a substantial inter-annual variability of lead occurrences in the Arctic is indicated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Schweizerbarth
    In:  Meteorologische Zeitschrift, 25 (5). pp. 543-562.
    Publication Date: 2019-05-31
    Description: The simulation of extremes using climate models is still a challenging task. Currently, the model grid horizontal resolution of state-of-the art regional climate models (RCMs) is about 11–25 km, which may still be too coarse to represent local extremes realistically. In this study we use dynamically downscaled ERA-40 reanalysis data of the RCM COSMO-CLM at 18 km resolution, downscale it dynamically further to 4.5 km and finally to 1.3 km to investigate the impact of the horizontal resolution on extremes. Extremes are estimated as return levels for the 2, 5 and 10‑year return periods using ‘peaks-over-threshold’ (POT) models. Daily return levels are calculated for precipitation and maximum 2 m temperature in summer as well as precipitation and 2 m minimum temperature in winter. The results show that CCLM is able to capture the spatial and temporal structure of the observed extremes, except for summer precipitation extremes. Furthermore, the spatial variability of the return levels increases with resolution. This effect is more distinct in case of temperature extremes due to a higher correlation with the better resolved orography. This dependency increases with increasing horizontal resolution. In comparison to observations, the spatial variability of temperature extremes is better simulated at a resolution of 1.3 km, but the return levels are cold-biased in summer and warm-biased in winter. Regarding precipitation, the spatial variability improves as well, although the return levels were slightly overestimated in summer by all CCLM simulations. In summary, the results indicate that an increase of the horizontal resolution of CCLM does have a significant effect on the simulation of extremes and that impact models and assessment studies may benefit from such high-resolution model output.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-09
    Description: In the early 1980s, Germany started a new era of modern Antarctic research. The Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) was founded and important research platforms such as the German permanent station in Antarctica, today called Neumayer III, and the research icebreaker Polarstern were installed. The research primarily focused on the Atlantic sector of the Southern Ocean. In parallel, the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) started a priority program ‘Antarctic Research’ (since 2003 called SPP-1158) to foster and intensify the cooperation between scientists from different German universities and the AWI as well as other institutes involved in polar research. Here, we review the main findings in meteorology and oceanography of the last decade, funded by the priority program. The paper presents field observations and modelling efforts, extending from the stratosphere to the deep ocean. The research spans a large range of temporal and spatial scales, including the interaction of both climate components. In particular, radiative processes, the interaction of the changing ozone layer with large-scale atmospheric circulations, and changes in the sea ice cover are discussed. Climate and weather forecast models provide an insight into the water cycle and the climate change signals associated with synoptic cyclones. Investigations of the atmospheric boundary layer focus on the interaction between atmosphere, sea ice and ocean in the vicinity of polynyas and leads. The chapters dedicated to polar oceanography review the interaction between the ocean and ice shelves with regard to the freshwater input and discuss the changes in water mass characteristics, ventilation and formation rates, crucial for the deepest limb of the global, climate-relevant meridional overturning circulation. They also highlight the associated storage of anthropogenic carbon as well as the cycling of carbon, nutrients and trace metals in the ocean with special emphasis on the Weddell Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-12-03
    Description: In the early 1980s, Germany started a new era of modern Antarctic research. The Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) was founded and important research platforms such as the German permanent station in Antarctica, today called Neumayer III, and the research icebreaker Polarstern were installed. The research primarily focused on the Atlantic sector of the Southern Ocean. In parallel, the German National Science Foundation (Deutsche Forschungsgemeinschaft DFG) started a Priority Program ‘Antarctic Research’ (since 2003 called SPP-1158) to foster and intensify the cooperation between scientists from different German universities and the AWI as well as other institutes involved in polar research. Here, we review the main findings in meteorology and oceanography of the last decade, funded by the priority program. The paper presents field observations and modelling efforts, extending from the stratosphere to the deep ocean. The research spans a large range of temporal and spatial scales, including the interaction of both climate components. In particular, radiative processes, the interaction of the changing ozone layer with large-scale atmospheric circulations, and changes in the sea ice cover are discussed. Climate and weather forecast models provide an insight into the water cycle and the climate change signals associated with synoptic cyclones. Investigations of the atmospheric boundary layer focus on the interaction between atmosphere, sea ice, and ocean in the vicinity of polynyas and leads. The chapters dedicated to polar oceanography review the interaction between the ocean and ice shelves with regard to the freshwater input and discuss the changes in water mass characteristics, ventilation and formation rates, crucial for the deepest limb of the global, climate relevant meridional overturning circulation. They also highlight the associated storage of anthropogenic carbon as well as the cycling of carbon, nutrients, and trace metals in the ocean with special emphasis on the Weddell Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-12-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: image/png
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...