GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (5)
  • 2013  (5)
Document type
Keywords
Years
  • 2010-2014  (5)
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 4 (2012): 64-71, doi:10.5670/oceanog.2012.104.
    Description: Some of the largest scientific manipulation experiments conducted on our planet have enriched broad swaths of the surface ocean with iron. Surface ocean signatures of these iron enrichment experiments have covered areas up to 〉 1,000 km2 and have been conspicuous from space. Twelve of these multidisciplinary studies have been conducted since the early 1990s in three specific ocean regions—the Southern Ocean, and equatorial and sub-Arctic areas of the Pacific Ocean—where plant nutrients are perennially high (termed high nutrient low chlorophyll, or HNLC). In addition, a combined phosphorus and iron enrichment experiment was conducted in the oligotrophic North Atlantic Ocean. Together, these studies represent a unique set of physical, chemical, optical, biological, and ecological data. The richness of these data sets is captured in an open-access relational database at the Biological and Chemical Oceanography Data Management Office. It is a product of Working Group 131 (The Legacy of in situ Iron Enrichment: Data Compilation and Modeling; http://www.scor-int.org/Working_Groups/wg131.htm) of the Scientific Committee on Oceanic Research. The purpose of this article is to make the wider community aware of this resource. It also presents the merits and provides examples of the utility of this database for exploring emerging topics in oceanography, such as the links between ecosystem processes and biogeochemical cycles; the feasibility and many side effects of oceanic geoengineering; and how understanding the coupling among physical, chemical, and biological processes at the mesoscale can inform the emerging field of submesoscale biogeochemistry.
    Description: This work was funded, in part, through support to SCOR from the US National Science Foundation (grant OCE-0938349).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Wiley
    In:  Evolution, 67 . pp. 1849-1859.
    Publication Date: 2019-01-22
    Description: Our perspective highlights potentially important links between disparate fields—biological oceanography, climate change research, and experimental evolutionary biology. We focus on one important functional group—photoautotrophic microbes (phytoplankton), which are responsible for ∼50% of global primary productivity. Global climate change currently results in the simultaneous change of several conditions such as warming, acidification, and nutrient supply. It thus has the potential to dramatically change phytoplankton physiology, community composition, and may result in adaptive evolution. Although their large population sizes, standing genetic variation, and rapid turnover time should promote swift evolutionary change, oceanographers have focussed on describing patterns of present day physiological differentiation rather than measure potential adaptation in evolution experiments, the only direct way to address whether and at which rate phytoplankton species will adapt to environmental change. Important open questions are (1) is adaptation limited by existing genetic variation or fundamental constraints? (2) Will complex ecological settings such as gradual versus abrupt environmental change influence adaptation processes? (3) How will increasing environmental variability affect the evolution of phenotypic plasticity patterns? Because marine phytoplankton species display rapid acclimation capacity (phenotypic buffering), a systematic study of reaction norms renders them particularly interesting to the evolutionary biology research community.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-01
    Keywords: CTD; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Event label; JGOFS; Joint Global Ocean Flux Study; Latitude of event; Longitude of event; Measured in situ; Salinity; SOIREE; Southern Ocean - Australasian-Pacific Sector; Sulfur hexafluoride, SF6; T1139-4; T1140-12; T1140-14; T1140-5; T1141-11; T1144-14; T1144-15; T1144-5; T1145-4; T1147-1; T1151-12; T1151-14; T1151-4; T1152-8; T1154-3; T1157-5; T1158-11; T1158-4; T1158-6; T1159-11; T1159-12; T1159-5; T1160-4; T1162-11; T1162-3; T1162-9; T1167-2; T1167-6; T1167-7; T1167-8; T1168-10; T1171-12; T1171-4; T1171-9; Tangaroa; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 783 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Cornwall, Christopher Edward; Hepburn, Christopher D; McGraw, Christina M; Currie, Kim I; Pilditch, Conrad A; Hunter, Keith A; Boyd, Philip W; Hurd, Catriona L (2013): Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proceedings of the Royal Society B-Biological Sciences, 280(1772), 20132201-20132201, https://doi.org/10.1098/rspb.2013.2201
    Publication Date: 2024-03-15
    Description: Coastal ecosystems that are characterized by kelp forests encounter daily pH fluctuations, driven by photosynthesis and respiration, which are larger than pH changes owing to ocean acidification (OA) projected for surface ocean waters by 2100. We investigated whether mimicry of biologically mediated diurnal shifts in pH-based for the first time on pH time-series measurements within a kelp forest-would offset or amplify the negative effects of OA on calcifiers. In a 40-day laboratory experiment, the calcifying coralline macroalga, Arthrocardia corymbosa, was exposed to two mean pH treatments (8.05 or 7.65). For each mean, two experimental pH manipulations were applied. In one treatment, pH was held constant. In the second treatment, pH was manipulated around the mean (as a step-function), 0.4 pH units higher during daylight and 0.4 units lower during darkness to approximate diurnal fluctuations in a kelp forest. In all cases, growth rates were lower at a reduced mean pH, and fluctuations in pH acted additively to further reduce growth. Photosynthesis, recruitment and elemental composition did not change with pH, but ?(13)C increased at lower mean pH. Including environmental heterogeneity in experimental design will assist with a more accurate assessment of the responses of calcifiers to OA.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Aragonite saturation state; Arthrocardia corymbosa; Benthos; Bicarbonate ion; Bicarbonate ion, standard error; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcium; Calcium, standard error; Calculated; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard error; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Chlorophyll a, standard error; Coast and continental shelf; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gross photosynthesis rate, oxygen; Gross photosynthesis rate, oxygen, standard error; Growth/Morphology; Growth rate; Growth rate, standard error; Incubation duration; Karitane; Laboratory experiment; Macroalgae; Magnesium; Magnesium, standard error; Magnesium carbonate, magnesite; Magnesium carbonate, magnesite, standard error; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard error; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Phycocyanin; Phycocyanin, standard error; Phycoerythrin; Phycoerythrin, standard error; Plantae; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Recruitment; Recruitment, standard error; Reproduction; Rhodophyta; Salinity; Single species; South Pacific; Species; Temperate; Temperature, water; Treatment; δ13C, inorganic carbon; δ13C, inorganic carbon, standard error; δ13C, organic carbon; δ13C, organic carbon, standard error; δ15N, organic matter; δ15N, organic matter, standard error
    Type: Dataset
    Format: text/tab-separated-values, 1763 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-03
    Description: Ocean acidification and greenhouse warming will interactively influence competitive success of key phytoplankton groups such as diatoms, but how long-term responses to global change will affect community structure is unknown. We incubated a mixed natural diatom community from coastal New Zealand waters in a short-term (two-week) incubation experiment using a factorial matrix of warming and/or elevated pCO2 and measured effects on community structure. We then isolated the dominant diatoms in clonal cultures and conditioned them for 1 year under the same temperature and pCO2 conditions from which they were isolated, in order to allow for extended selection or acclimation by these abiotic environmental change factors in the absence of interspecific interactions. These conditioned isolates were then recombined into 'artificial' communities modelled after the original natural assemblage and allowed to compete under conditions identical to those in the short-term natural community experiment. In general, the resulting structure of both the unconditioned natural community and conditioned 'artificial' community experiments was similar, despite differences such as the loss of two species in the latter. pCO2 and temperature had both individual and interactive effects on community structure, but temperature was more influential, as warming significantly reduced species richness. In this case, our short-term manipulative experiment with a mixed natural assemblage spanning weeks served as a reasonable proxy to predict the effects of global change forcing on diatom community structure after the component species were conditioned in isolation over an extended timescale. Future studies will be required to assess whether or not this is also the case for other types of algal communities from other marine regimes.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Cell density; Chaetoceros criophilus; Coast and continental shelf; Community composition and diversity; Coscinodiscus sp.; Coulometric titration; Cylindrotheca fusiformis; Entire community; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Incubation duration; Laboratory experiment; Navicula sp.; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Pseudonitzschia delicatissima; Salinity; Sample ID; South Pacific; Species; Spectrophotometric; Temperate; Temperature; Temperature, water; Thalassiosira sp.; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 10188 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...