GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022
  • 2015-2019
  • 2010-2014  (5)
  • 2011  (5)
Document type
Years
  • 2020-2022
  • 2015-2019
  • 2010-2014  (5)
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2010. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 52 (2010): 1322-1335.
    Description: The Keck Carbon Cycle AMS facility at the University of California, Irvine (KCCAMS/UCI) has developed protocols for analyzing radiocarbon in samples as small as ~0.001 mg of carbon (C). Mass-balance background corrections for modern and 14C-dead carbon contamination (MC and DC, respectively) can be assessed by measuring 14C-free and modern standards, respectively, using the same sample processing techniques that are applied to unknown samples. This approach can be validated by measuring secondary standards of similar size and 14C composition to the unknown samples. Ordinary sample processing (such as ABA or leaching pretreatment, combustion/graphitization, and handling) introduces MC contamination of ~0.6 ± 0.3 μg C, while DC is ~0.3 ± 0.15 μg C. Today, the laboratory routinely analyzes graphite samples as small as 0.015 mg C for external submissions and ≅0.001 mg C for internal research activities with a precision of ~1% for ~0.010 mg C. However, when analyzing ultra-small samples isolated by a series of complex chemical and chromatographic methods (such as individual compounds), integrated procedural blanks may be far larger and more variable than those associated with combustion/graphitization alone. In some instances, the mass ratio of these blanks to the compounds of interest may be so high that the reported 14C results are meaningless. Thus, the abundance and variability of both MC and DC contamination encountered during ultra-small sample analysis must be carefully and thoroughly evaluated. Four case studies are presented to illustrate how extraction chemistry blanks are determined.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2005. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 47 (2005): 413-424.
    Description: We evaluate potential process blanks associated with radiocarbon measurement of microgram to milligram quantities of alkenones at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility. Two strategies to constrain the contribution of blanks to alkenone 14C dates were followed: 1) dating of samples of known age and 2) multiple measurements of identical samples. We show that the potential contamination associated with the procedure does not lead to a systematic bias of the results of alkenone dating to either younger or older ages. Our results indicate that alkenones record Δ14C of ambient DIC with an accuracy of approximately 10‰. A conservative estimate of measurement precision is 17‰ for modern samples. Alkenone 14C ages are expected to be reliable within 500 yr for samples younger than 10,500 14C yr.
    Description: This research was funded by NSF grant # OCE-0327405 and DFG project # SCHN621 and a WHOI-NOSAMS postdoctoral scholarship to GM.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2005. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 47 (2005): 401-412.
    Description: The chemical and isotopic compositions of long-chain (C36–C39) unsaturated ketones (alkenones), a unique class of algal lipids, encode surface ocean properties useful for paleoceanographic reconstruction. Recently, we have sought to extend the utility of alkenones as oceanic tracers through measurement of their radiocarbon contents. Here, we describe a method for isolation of alkenones from sediments as a compound class based on a sequence of wet chemical techniques. The steps involved, which include silica gel column chromatography, urea adduction, and silver nitrate-silica gel column chromatography, exploit various structural attributes of the alkenones. Amounts of purified alkenones estimated by GC/FID measurements were highly correlated with CO2 yields after sample combustion, indicating purities of greater than 90% for samples containing ≥100 μg C. The degree of alkenone unsaturation ( ) also varied minimally through the procedure. We also describe a high-performance liquid chromatography (HPLC) method to isolate individual alkenones for molecular-level structural and isotopic determination.
    Description: This work was funded through grants from the National Science Foundation (OCE-9809624; OCE- 9907129) and the Japan Society for the Promotion of Science.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2005. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 47 (2005): 425-432.
    Description: As a result of the growing use of multiple geochemical proxies to reconstruct ocean and climate changes in the past, there is an increasing need to establish temporal relationships between proxies derived from the same marine sediment record and ideally from the same core sections. Coupled proxy records of surface ocean properties, such as those based on lipid biomarkers (e.g. alkenone-derived sea surface temperature) and planktonic foraminiferal carbonate (oxygen isotopes), are a key example. Here, we assess whether 2 different solvent extraction procedures used for isolation of molecular biomarkers influence the radiocarbon contents of planktonic foraminiferal carbonate recovered from the corresponding residues of Bermuda Rise and Cariaco Basin sediments. Although minor Δ14C differences were observed between solvent-extracted and unextracted samples, no substantial or systematic offsets were evident. Overall, these data suggest that, in a practical sense, foraminiferal shells from a solvent-extracted residue can be reliably used for 14C dating to determine the age of sediment deposition and to examine age relationships with other sedimentary constituents (e.g. alkenones).
    Description: This work was financially supported by NSF grant 9809624. N Ohkouchi was supported by a fellowship from Japan Society for the Promotion of Science.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 26 (2011): PA1209, doi:10.1029/2010PA002000.
    Description: A molecular organic geochemical proxy (TEX86) for sea surface temperature (SST) is compared with a foraminifera-based SST proxy (Mg/Ca) in a decadal-resolution marine sedimentary record spanning the last 1000 years from the Gulf of Mexico. We assess the relative strengths of the organic and inorganic paleoceanographic techniques for reconstructing high-resolution SST variability during recent climate events, including the Little Ice Age (LIA) and the Medieval Warm Period (MWP). SST estimates based on the molecular organic proxy TEX86 show a similar magnitude and pattern of SST variability to foraminiferal Mg/Ca-SST estimates but with some important differences. For instance, both proxies show a cooling (1°C–2°C) of Gulf of Mexico SSTs during the LIA. During the MWP, however, Mg/Ca-SSTs are similar to near-modern SSTs, while TEX86 indicates SSTs that were cooler than modern. Using the respective SST calibrations for each proxy results in TEX86-SST estimates that are 2°C–4°C warmer than Mg/Ca-SST throughout the 1000 year record. We interpret the TEX86-SST as a summer-weighted SST signal from the upper mixed layer, whereas the Mg/Ca-SST better reflects the mean annual SST. Downcore differences in the SST estimates between the two proxies (ΔT = TEX86 − Mg/Ca) are interpreted in the context of varying seasonality and/or changing water column temperature gradients.
    Description: This work was supported, in part, by the National Science Foundation under grants OCE‐0318361 and OCE‐0903017.
    Keywords: TEX86 ; Little Ice Age ; Late Holocene
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/vnd.ms-excel
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...