GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019
  • 2010-2014  (3)
  • 2012  (2)
  • 2011  (1)
Document type
Years
  • 2015-2019
  • 2010-2014  (3)
Year
  • 1
    Publication Date: 2019-09-23
    Description: Subtropical western boundary currents are warm, fast-flowing currents that form on the western side of ocean basins. They carry warm tropical water to the mid-latitudes and vent large amounts of heat and moisture to the atmosphere along their paths, affecting atmospheric jet streams and mid-latitude storms, as well as ocean carbon uptake1, 2, 3, 4. The possibility that these highly energetic currents might change under greenhouse-gas forcing has raised significant concerns5, 6, 7, but detecting such changes is challenging owing to limited observations. Here, using reconstructed sea surface temperature datasets and century-long ocean and atmosphere reanalysis products, we find that the post-1900 surface ocean warming rate over the path of these currents is two to three times faster than the global mean surface ocean warming rate. The accelerated warming is associated with a synchronous poleward shift and/or intensification of global subtropical western boundary currents in conjunction with a systematic change in winds over both hemispheres. This enhanced warming may reduce the ability of the oceans to absorb anthropogenic carbon dioxide over these regions. However, uncertainties in detection and attribution of these warming trends remain, pointing to a need for a long-term monitoring network of the global western boundary currents and their extensions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 1741–1755, doi:10.1175/2011JPO4437.1.
    Description: An in-depth data analysis was conducted to understand the occurrence of a strong sea surface temperature (SST) front in the central Bay of Bengal before the formation of Cyclone Nargis in April 2008. Nargis changed its course after encountering the front and tracked along the front until making landfall. One unique feature of this SST front was its coupling with high sea surface height anomalies (SSHAs), which is unusual for a basin where SST is normally uncorrelated with SSHA. The high SSHAs were associated with downwelling Rossby waves, and the interaction between downwelling and surface fresh waters was a key mechanism to account for the observed SST–SSHA coupling. The near-surface salinity field in the bay is characterized by strong stratification and a pronounced horizontal gradient, with low salinity in the northeast. During the passage of downwelling Rossby waves, freshening of the surface layer was observed when surface velocities were southwestward. Horizontal convergence of freshwater associated with downwelling Rossby waves increased the buoyancy of the upper layer and caused the mixed layer to shoal to within a few meters of the surface. Surface heating trapped in the thin mixed layer caused the fresh layer to warm, whereas the increase in buoyancy from low-salinity waters enhanced the high SSHA associated with Rossby waves. Thus, high SST coincided with high SSHA. The dominant role of salinity in controlling high SSHA suggests that caution should be exercised when computing hurricane heat potential in the bay from SSHA. This situation is different from most tropical oceans, where temperature has the dominant effect on SSHA.
    Description: This work was supported by the NOAA/Office of Climate Observation (OCO) program.
    Keywords: Rossby waves ; Sea surface temperature ; Sea/ocean surface
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Climate Change 2 (2012): 161-166, doi:10.1038/nclimate1353.
    Description: Subtropical western boundary currents are warm, fast flowing currents that form on the western side of ocean basins. They carry warm tropical water to the mid-latitudes and vent large amounts of heat and moisture to the atmosphere along their paths, affecting atmospheric jet streams and mid-latitude storms, as well as ocean carbon uptake. The possibility that these highly energetic and nonlinear currents might change under greenhouse gas forcing has raised significant concerns, but detecting such changes is challenging owing to limited observations. Here, using reconstructed sea surface temperature datasets and newly developed century-long ocean and atmosphere reanalysis products, we find that the post-1900 surface ocean warming rate over the path of these currents is two to three times faster than the global mean surface ocean warming rate. The accelerated warming is associated with a synchronous poleward shift and/or intensification of global subtropical western boundary currents in conjunction with a systematic change in winds over both hemispheres. This enhanced warming may reduce ocean's ability to absorb anthropogenic carbon dioxide over these regions. However, uncertainties in detection and attribution of these warming trends remain, pointing to a need for a long-term monitoring network of the global western boundary currents and their extensions.
    Description: This work is supported by China National Key Basic Research Project (2007CB411800) and National Natural Science Foundation Projects (40788002, 40921004). WC is supported by the Australian Climate Change Science program and the Southeast Australia Climate Initiative. HN is supported in part by the Japanese Ministry of Education, Culture, Sports, Science and Technology through Grant-in-Aid for Scientific Research on Innovative Areas #2205 and by the Japanese Ministry of Environment through Global Environment Research Fund (S-5). MJM is supported by NOAA’s Climate Program Office.
    Description: 2012-07-29
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...