GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Jacob, Ute; Thierry, Aaron; Brose, Ulrich; Arntz, Wolf E; Berg, Sofia; Brey, Thomas; Fetzer, Ingo; Jonsson, Tomas; Mintenbeck, Katja; Möllmann, Christian; Petchey, Owen L; Riede, Jens O; Dunne, Jennifer A (2011): The role of body size in complex food webs: A cold case. Advances in Ecological Research, 45, 181-223, https://doi.org/10.1016/B978-0-12-386475-8.00005-8
    Publication Date: 2023-10-28
    Description: Human-induced habitat destruction, overexploitation, introduction of alien species and climate change are causing species to go extinct at unprecedented rates, from local to global scales. There are growing concerns that these kinds of disturbances alter important functions of ecosystems. Our current understanding is that key parameters of a community (e.g. its functional diversity, species composition, and presence/absence of vulnerable species) reflect an ecological network's ability to resist or rebound from change in response to pressures and disturbances, such as species loss. If the food web structure is relatively simple, we can analyse the roles of different species interactions in determining how environmental impacts translate into species loss. However, when ecosystems harbour species-rich communities, as is the case in most natural systems, then the complex network of ecological interactions makes it a far more challenging task to perceive how species' functional roles influence the consequences of species loss. One approach to deal with such complexity is to focus on the functional traits of species in order to identify their respective roles: for instance, large species seem to be more susceptible to extinction than smaller species. Here, we introduce and analyse the marine food web from the high Antarctic Weddell Sea Shelf to illustrate the role of species traits in relation to network robustness of this complex food web. Our approach was threefold: firstly, we applied a new classification system to all species, grouping them by traits other than body size; secondly, we tested the relationship between body size and food web parameters within and across these groups and finally, we calculated food web robustness. We addressed questions regarding (i) patterns of species functional/trophic roles, (ii) relationships between species functional roles and body size and (iii) the role of species body size in terms of network robustness. Our results show that when analyzing relationships between trophic structure, body size and network structure, the diversity of predatory species types needs to be considered in future studies.
    Keywords: Environment; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Species; Species code; SPP1158; Weddell_Sea_Shelf; Weddell Sea
    Type: Dataset
    Format: text/tab-separated-values, 1464 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-25
    Keywords: Age; AGE; Carlini/Jubany Station; Digital imaging; DIVER; Jubany_Dallmann; laternula-2011_01; LTER_Benthos; Macrobenthic long-term series in the German Bight; ORDINAL NUMBER; Potter Cove, King George Island, Antarctic Peninsula; Replicates; Sampling by diver; Standardized shell increment; Standardized shell increment, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 196 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ivany, Linda C; Brey, Thomas; Huber, Matthew; Buick, Devin P; Schöne, Bernd R (2011): El Niño in the Eocene greenhouse recorded by fossil bivalves and wood from Antarctica. Geophysical Research Letters, 38, L16709, https://doi.org/10.1029/2011GL048635
    Publication Date: 2024-01-25
    Description: Quasi-periodic variation in sea-surface temperature, precipitation, and sea-level pressure in the equatorial Pacific known as the El Niño - Southern Oscillation (ENSO) is an important mode of interannual variability in global climate. A collapse of the tropical Pacific onto a state resembling a so-called 'permanent El Niño', with a preferentially warmed eastern equatorial Pacific, flatter thermocline, and reduced interannual variability, in a warmer world is predicted by prevailing ENSO theory. If correct, future warming will be accompanied by a shift toward persistent conditions resembling El Niño years today, with major implications for global hydrological cycles and consequent impacts on socioeconomic and ecological systems. However, much uncertainty remains about how interannual variability will be affected. Here, we present multi-annual records of climate derived from growth increment widths in fossil bivalves and co-occurring driftwood from the Antarctic peninsula that demonstrate significant variability in the quasi-biennial and 3-6 year bands consistent with ENSO, despite early Eocene (~50 Mya) greenhouse conditions with global average temperature -10 degrees higher than today. A coupled climate model suggests an ENSO signal and teleconnections to this region during the Eocene, much like today. The presence of ENSO variation during this markedly warmer interval argues for the persistence of robust interannual variability in our future greenhouse world.
    Keywords: Antarctic Peninsula; HAND; LTER_Benthos; Macrobenthic long-term series in the German Bight; Sampling by hand; Seymour_Island
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-25
    Keywords: Age, relative, number of years; Antarctic Peninsula; Cubic spline detrending; HAND; Increment counting; LTER_Benthos; Macrobenthic long-term series in the German Bight; Sampling by hand; Seymour_Island; Standardized shell increment
    Type: Dataset
    Format: text/tab-separated-values, 461 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-25
    Keywords: Age, relative, number of years; Antarctic Peninsula; Cubic spline detrending; HAND; Increment counting; LTER_Benthos; Macrobenthic long-term series in the German Bight; Sampling by hand; Seymour_Island; Standardized shell increment
    Type: Dataset
    Format: text/tab-separated-values, 314 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Abele, Doris; Kruppe, Melanie; Philipp, Eva E R; Brey, Thomas (2010): Mantle cavity water oxygen partial pressure (Po-2) in marine molluscs aligns with lifestyle. Canadian Journal of Fisheries and Aquatic Sciences, 67(6), 977-986, https://doi.org/10.1139/F10-035
    Publication Date: 2023-12-13
    Description: Marine invertebrates with open circulatory system establish low and constant oxygen partial pressure (Po2) around their tissues. We hypothesized that as a first step towards maintenance of low haemolymph and tissue oxygenation, the Po2 in molluscan mantle cavity water should be lowered against normoxic (21 kPa) seawater Po2, but balanced high enough to meet the energetic requirements in a given species. We recorded Po2 in mantle cavity water of five molluscan species with different lifestyles, two pectinids (Aequipecten opercularis, Pecten maximus), two mud clams (Arctica islandica, Mya arenaria), and a limpet (Patella vulgata). All species maintain mantle cavity water oxygenation below normoxic Po2. Average mantle cavity water Po2 correlates positively with standard metabolic rate (SMR): highest in scallops and lowest in mud clams. Scallops show typical Po2 frequency distribution, with peaks between 3 and 10 kPa, whereas mud clams and limpets maintain mantle water Po2 mostly 〈5 kPa. Only A. islandica and P. vulgata display distinguishable temporal patterns in Po2 time series. Adjustment of mantle cavity Po2 to lower than ambient levels through controlled pumping prevents high oxygen gradients between bivalve tissues and surrounding fluid, limiting oxygen flux across the body surface. The patterns of Po2 in mantle cavity water correspond to molluscan ecotypes.
    Keywords: International Polar Year (2007-2008); IPY
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Begum, Salma; Basova, Larisa; Heilmayer, Olaf; Philipp, Eva E R; Abele, Doris; Brey, Thomas (2010): Growth and energy budget models of the bivalve Arctica islandica at six different sites in the Northeast Atlantic realm. Journal of Shellfish Research, 29(1), 107-115, https://doi.org/10.2983/035.029.0103
    Publication Date: 2023-12-13
    Description: We compared lifetime and population energy budgets of the extraordinary long-lived ocean quahog Arctica islandica from 6 different sites - the Norwegian coast, Kattegat, Kiel Bay, White Sea, German Bight, and off northeast Iceland - covering a temperature and salinity gradient of 4-10°C (annual mean) and 25-34, respectively. Based on von Bertalanffy growth models and size-mass relationships, we computed organic matter production of body (PSB) and of shell (PSS), whereas gonad production (PG) was estimated from the seasonal cycle in mass. Respiration (R) was computed by a model driven by body mass, temperature, and site. A. islandica populations differed distinctly in maximum life span (40 y in Kiel Bay to 197 y in Iceland), but less in growth performance (phi' ranged from 2.41 in the White Sea to 2.65 in Kattegat). Individual lifetime energy throughput, as approximated by assimilation, was highest in Iceland (43,730 kJ) and lowest in the White Sea (313 kJ). Net growth efficiency ranged between 0.251 and 0.348, whereas lifetime energy investment distinctly shifted from somatic to gonad production with increasing life span; PS/PG decreased from 0.362 (Kiel Bay, 40 y) to 0.031 (Iceland, 197 y). Population annual energy budgets were derived from individual budgets and estimates of population mortality rate (0.035/y in Iceland to 0.173/y in Kiel Bay). Relationships between budget ratios were similar on the population level, albeit with more emphasis on somatic production; PS/ PG ranged from 0.196 (Iceland) to 2.728 (White Sea), and P/B ranged from 0.203-0.285/y. Life span is the principal determinant of the relationship between budget parameters, whereas temperature affects net growth efficiency only. In the White Sea population, both growth performance and net growth efficiency of A. islandica were lowest. We presume that low temperature combined with low salinity represent a particularly stressful environment for this species.
    Keywords: International Polar Year (2007-2008); IPY
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...