GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (3)
  • 2005-2009  (3)
  • 2009  (3)
Document type
Publisher
Years
  • 2005-2009  (3)
Year
  • 1
    Publication Date: 2023-11-08
    Description: On the Pacific margin off central Costa Rica, an anomalous lens-shaped zone is located between the overriding plate and the subducting oceanic lithosphere approximately 25 km landward of the deformation front. This feature was previously recognized in reflection seismic data when it was termed 'megalens'. Its origin and seismic velocity structure, however, could not unambiguously be derived from earlier studies. Therefore during RV SONNE cruise SO163, seismic wide-angle data were acquired in 2002 using closely spaced ocean bottom hydrophones and seismometers along two parallel strike and two parallel dip lines above the 'megalens', intersecting on the middle slope. The P-wave velocities and structure of the subducting oceanic Cocos Plate and overriding Caribbean Plate were determined by modelling the wide-angle seismic data in combination with the analysis of coincident reflection seismic data and the use of synthetic seismograms. The margin wedge is defined by high seismic velocities (4.3-6.1 km s(-1)) identified within a wedge-shaped body covered by a slope sediment drape. It is divided into two layers with different velocity gradients. The lower margin wedge is clearly constrained by decreasing velocities trenchward and terminates beneath the middle slope at the location of the 'megalens'. Seismic velocities of the 'megalens' are lower (3.8-4.3 km s(-1)) relative to the margin wedge. We propose that the 'megalens' represents hybrid material composed of subducted sediment and eroded fragments from the base of the upper plate. Upward-migrating overpressured fluids weaken the base of the margin wedge through hydrofracturing, thus causing material transfer from the upper plate to the lower plate. Results from amplitude modelling support that the 'megalens' observed off central Costa Rica is bound by a low-velocity zone documenting fluid drainage from the plate boundary to the upper plate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-13
    Description: The Central Costa Rican Pacific margin is characterized by a high-seismicity rate, coincident with the subduction of rough-relief ocean floor and has generated earthquakes with magnitude up to seven in the past. We inverted selected P-wave traveltimes from earthquakes recorded by a combined on- and offshore seismological array deployed during 6 months in the area, simultaneously determining hypocentres and the 3-D tomographic velocity structure on the shallow part of the subduction zone (〈70 km). The results reflect the complexity associated to subduction of ocean-floor morphology and the transition from normal to thickened subducting oceanic crust. The subducting slab is imaged as a high-velocity perturbation with a band of low velocities (LVB) on top encompassing the intraslab seismicity deeper than ∼30 km. The LVB is locally thickened by the presence of at least two subducted seamounts beneath the margin wedge. There is a general eastward widening of the LVB over a relatively short distance, closely coinciding with the onset of an inverted forearc basin onshore and the appearance of an aseismic low-velocity anomaly beneath the inner forearc. The latter coincides spatially with an area of the subaerial forearc where differential uplift of blocks has been described, suggesting tectonic underplating of eroded material against the base of the upper plate crust. Alternatively, the low velocities could be induced by an accumulation of upward migrating fluids. Other observed velocity perturbations are attributed to several processes taking place at different depths, such as slab hydration through outer rise faulting, tectonic erosion and slab dehydration.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-13
    Description: Crustal- and upper-mantle structures of the subduction zone in south central Chile, between 42 degrees S and 46 degrees S, are determined from seismic wide-angle reflection and refraction data, using the seismic ray tracing method to calculate minimum parameter models. Three profiles along differently aged segments of the subducting Nazca Plate were analysed in order to study subduction zone structure dependencies related to the age, that is, thermal state, of the incoming plate. The age of the oceanic crust at the trench ranges from 3 Ma on the southernmost profile, immediately north of the Chile triple junction, to 6.5 Ma old about 100 km to the north, and to 14.5 Ma old another 200 km further north, off the Island of Chiloe. Remarkable similarities appear in the structures of both the incoming as well as the overriding plate. The oceanic Nazca Plate is around 5 km thick, with a slightly increasing thickness northward, reflecting temperature changes at the time of crustal generation. The trench basin is about 2 km thick except in the south where the Chile Ridge is close to the deformation front and only a small, 800-m-thick trench infill could develop. In south central Chile, typically three quarters (1.5 km) of the trench sediments subduct below the decollement in the subduction channel. To the north and south of the study area, only about one quarter to one third of the sediments subducts, the rest is accreted above. Similarities in the overriding plate are the width of the active accretionary prism, 35-50 km, and a strong lateral crustal velocity gradient zone about 75-80 km landward from the deformation front, where landward upper-crustal velocities of over 5.0-5.4 km s〈SU-1〈/SU decrease seaward to around 4.5 km s〈SU-1〈/SU within about 10 km, which possibly represents a palaeo-backstop. This zone is also accompanied by strong intraplate seismicity. Differences in the subduction zone structures exist in the outer rise region, where the northern profile exhibits a clear bulge of uplifted oceanic lithosphere prior to subduction whereas the younger structures have a less developed outer rise. This plate bending is accompanied by strongly reduced rock velocities on the northern profile due to fracturing and possible hydration of the crust and upper mantle. The southern profiles do not exhibit such a strong alteration of the lithosphere, although this effect may be counteracted by plate cooling effects, which are reflected in increasing rock velocities away from the spreading centre. Overall there appears little influence of incoming plate age on the subduction zone structure which may explain why the M-w = 9.5 great Chile earthquake from 1960 ruptured through all these differing age segments. The rupture area, however, appears to coincide with a relatively thick subduction channel.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...