GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (2)
  • Kiel : IFM-GEOMAR
  • 2005-2009  (2)
  • 2007  (2)
Document type
Publisher
  • AGU (American Geophysical Union)  (2)
  • Kiel : IFM-GEOMAR
Years
  • 2005-2009  (2)
Year
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 112 . C09017.
    Publication Date: 2018-04-19
    Description: An eddy-permitting circulation model of the Atlantic Ocean was used to study the effect of mesoscale processes on the uptake and spreading of anthropogenic CO2 and CFC-11. A comparison with a coarser-resolution model version shows anthropogenic tracer distributions with qualitatively similar patterns, but much more structure (e.g., stronger longitudinal gradients) in the eddy-permitting model, improving the agreement with observations. The better representation of the formation of water masses such as subpolar-mode water in the eddy-permitting model has an influence on the distribution of anthropogenic CO2 over density classes, but no influence on the total inventory taken up. In the subpolar Atlantic, the air-sea flux of CFC-11 is dominated by deep-water formation, while the air-sea flux of anthropogenic CO2 extends over a larger part of the subpolar gyre and has a clear association with North Atlantic surface currents. An in-depth analysis of the mechanisms shaping this distribution showed that the entrainment of water from below into the mixed layer determines the structure in the subpolar North Atlantic, whereas the temporal correlation between surface heat fluxes and mixed-layer depth is more important in the subtropical gyre. The northward, integrated heat and anthropogenic CO2 transports in midlatitudes are closely correlated on seasonal to interannual timescales. This has implications for using the ongoing monitoring arrays of the thermohaline circulation for estimation of the transport of anthropogenic CO2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Ocean Circulation: Mechanisms and Impacts - Past and Future Changes of the Ocean's Meridional Overturning. , ed. by Schmittner, A., Chiang, J. and Hemming, S. AGU Monograph, 173 . AGU (American Geophysical Union), Washington D.C., pp. 149-166. ISBN 978-0-87590-438-2
    Publication Date: 2020-07-28
    Description: The dynamics and predictability of the decadal to multidecadal Atlantic merid­ional overturning circulation (MOC) variability are described from observations and models. The investigation focuses on two modes that involve the MOC: One mode exhibits a quasi-decadal period, while the other is multidecadal. The two modes have completely different underlying dynamics, which is reflected in their rather different spatial characteristics. While the quasi-decadal mode represents a damped mode of the coupled ocean-atmosphere system, the multidecadal mode can be basically understood as the MOC response to the multidecadal forcing by the North Atlantic Oscillation (NAO). "Perfect model" predictability studies indicate a rather high predictability potential of the MOC variability on decadal timescales. Variations of the MOC are associated with variations in the meridional heat trans­port that drive sea surface temperature (SST) anomalies. SST anomalies in the North Atlantic thus exhibit a similar decadal predictability potential as the MOC. The decadal predictability carries over to the atmosphere. The probability density function of European surface air temperature anomalies, for instance, changes sig­nificantly with the state of the MOC. A reconstruction of the MOC for the 20th cen­tury from observed SSTs shows considerable variability on decadal timescales, but no strong sustained long-term trend. Furthermore, an assessment of the observed hydrographical changes in the Nordic Seas, with the aid of ocean general circula­tion model experiments and the analysis of recent scenario integrations with global climate models, indicates that the expected anthropogenic weakening of the MOC may not exceed the level of the internal variability within the next decades.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...