GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (4)
  • EAGE
  • 2000-2004  (4)
  • 2003  (4)
Document type
Publisher
Years
  • 2000-2004  (4)
Year
  • 1
    Publication Date: 2017-02-14
    Description: The southern central Chilean margin at the site of the largest historically recorded earthquake in the Valdivia region, in 1960 (Mw = 9.5), is part of the 5000-km-long active subduction system whose geodynamic evolution is controversially debated and poorly understood. Covering the area between 36° and 40°S, the oceanic crust is segmented by prominent fracture zones. The offshore forearc and its onshore continuation show a complex image with segments of varying geophysical character, and several fault systems active during the past 24 m.y. In autumn 2001, the project SPOC was organized to study the Subduction Processes Off Chile, with a focus on the seismogenic coupling zone and the forearc. The acquired seismic data crossing the Chilean subduction system were gathered in a combined offshore-onshore survey and provide new insights into the lithospheric structure and evolution of active margins with insignificant frontal accretion.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 108 (B10). p. 2491.
    Publication Date: 2018-05-30
    Description: The shallow seismogenic portion of subduction zones generates damaging large and great earthquakes. This study provides structural constraints on the seismogenic zone of the Middle America Trench offshore central Costa Rica and insights into the physical and mechanical characteristics controlling seismogenesis. We have located ~300 events that occurred following the MW 6.9, 20 August 1999, Quepos, Costa Rica, underthrusting earthquake using a three-dimensional velocity model and arrival time data recorded by a temporary local network of land and ocean bottom seismometers. We use aftershock locations to define the geometry and characteristics of the seismogenic zone in this region. These events define a plane dipping at 19° that marks the interface between the Cocos Plate and the Panama Block. The majority of aftershocks occur below 10 km and above 30 km depth below sea level, corresponding to 30–35 km and 95 km from the trench axis, respectively. Relative event relocation produces a seismicity pattern similar to that obtained using absolute locations, increasing confidence in the geometry of the seismogenic zone. The aftershock locations spatially correlate with the downdip extension of the oceanic Quepos Plateau and reflect the structure of the main shock rupture asperity. This strengthens an earlier argument that the 1999 Quepos earthquake ruptured specific bathymetric highs on the downgoing plate. We believe that subduction of this highly disrupted seafloor has established a set of conditions which presently limit the seismogenic zone to be between 10 and 35 km below sea level.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-07
    Description: The Musicians Seamount Province is a group of volcanic elongated ridges (VERs) and single seamounts located north of the Hawaiian Chain. A 327° trending seamount chain defines the western part of the province and has been interpreted as the expression of a Cretaceous hot spot beneath the northward moving Pacific Plate. To the east, elongated E-W striking ridges dominate the morphology. In 1999, wide-angle seismic data were collected across two 400 km long VERs. We present tomographic images of the volcanic edifices, which indicate that crustal thickening occurs in oceanic layer 2 rather than in layer 3. This extrusive style of volcanism appears to strongly contrast with the formation processes of aseismic ridges, where crustal thickening is mostly accommodated by intrusive underplating. High-resolution bathymetry was also collected, which yields a detailed image of the morphology of the VERs. From the occurrence of flat-top guyots and from the unique geomorphologic setting, two independent age constraints for the Pacific crust during the Cretaceous “quiet” zone are obtained, allowing a tectonic reconstruction for the formation of the Musicians VERs. Hot spot-ridge interaction leads to asthenosphere channeling from the plume to the nearby spreading center over a maximum distance of 400 km. The Musicians VERs were formed by mainly extrusive volcanism on top of this melt-generating channel. The proposed formation model may be applicable to a number of observed volcanic ridges in the Pacific, including the Tuamotu Isles, the eastern portion of the Foundation chain, and the western termination of the Salas y Gomez seamount chain.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-10
    Description: The Cocos and Malpelo Volcanic Ridges are blocks of thickened oceanic crust thought to be the result of the interaction between the Galapagos hot spot and the Cocos‐Nazca Spreading Center during the last 20 m.y. In this work we investigate the seismic structure of these two aseismic ridges along three wide‐angle transects acquired during the Panama basin and Galapagos plume—New Investigations of Intraplate magmatism (PAGANINI)‐1999 experiment. A two‐dimensional velocity field with the Moho geometry is obtained using joint refraction/reflection travel time tomography, and the uncertainty and robustness of the results are estimated by performing a Monte Carlo‐type analysis. Our results show that the maximum crustal thickness along these profiles ranges from ∼16.5 km (southern Cocos) to ∼19 km (northern Cocos and Malpelo). Oceanic layer 2 thickness is quite uniform regardless of total crustal thickness variations; crustal thickening is mainly accommodated by layer 3. These observations are shown to be consistent with gravity data. The variation of layer 3 velocities is similar along all profiles, being lower where crust is thicker. This leads to an overall anticorrelation between crustal thickness and bulk lower crustal velocity. Since this anticorrelation is contrary to crustal thickening resulting from passive upwelling of abnormally hot mantle, it is necessary to consider active upwelling components and/or some compositional heterogeneities in the mantle source. The NW limit of the Malpelo Ridge shows a dramatic crustal thinning and displays high lower crustal velocities and a poorly defined crust‐mantle boundary, suggesting that differential motion along the Coiba transform fault probably separated Regina and Malpelo Ridges.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...