GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • 2000-2004  (2)
  • 2001  (2)
Document type
  • Articles  (2)
Publisher
Years
  • 2000-2004  (2)
Year
Topic
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Intracellular inclusions containing α-synuclein (αSN) are pathognomonic features of several neurodegenerative disorders. Inclusions occur in oligodendrocytes in multiple system atrophy (MSA) and in neurons in dementia with Lewy bodies (DLB) and Parkinson's disease (PD). In order to identify disease-associated changes of αSN, this study compared the levels, solubility and molecular weight species of αSN in brain homogenates from MSA, DLB, PD and normal aged controls. In DLB and PD, substantial amounts of detergent-soluble and detergent-insoluble αSN were detected compared with controls in grey matter homogenate. Compared with controls, MSA cases had significantly higher levels of αSN in the detergent-soluble fraction of brain samples from pons and white matter but detergent-insoluble αSN was not detected. There was an inverse correlation between buffered saline-soluble and detergent-soluble levels of αSN in individual MSA cases suggesting a transition towards insolubility in disease. The differences in solubility of αSN between grey and white matter in disease may result from different processing of αSN in neurons compared with oligodendrocytes. Highly insoluble αSN is not involved in the pathogenesis of MSA. It is therefore possible that buffered saline-soluble or detergent-soluble forms of αSN are involved in the pathogenesis of other αSN-related diseases.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Oxidative stress may have an important role in the progression of neurodegenerative disorders such as Alzheimer's disease (AD) and prion diseases. Oxidative damage could result from interactions between highly reactive transition metals such as copper (Cu) and endogenous reducing and/or oxidizing molecules in the brain. One such molecule, homocysteine, a thiol-containing amino acid, has previously been shown to modulate Cu toxicity in HeLa and endothelial cells in vitro. Due to a possible link between hyperhomocysteinemia and AD, we examined whether interaction between homocysteine and Cu could potentiate Cu neurotoxicity. Primary mouse neuronal cultures were treated with homocysteine and either Cu (II), Fe (II or III) or Zn (II). Homocysteine was shown to selectively potentiate toxicity from low micromolar concentrations of Cu. The toxicity of homocysteine/Cu coincubation was dependent on the ability of homocysteine to reduce Cu (II) as reflected by the inhibition of toxicity with the Cu (I)-specific chelator, bathocuproine disulphonate. This was supported by data showing that homocysteine reduced Cu (II) more effectively than cysteine or methionine but did not reduce Fe (III) to Fe (II). Homocysteine also generated high levels of hydrogen peroxide in the presence of Cu (II) and promoted Aβ/Cu-mediated hydrogen peroxide production and neurotoxicity. The potentiation of metal toxicity did not involve excitotoxicity as ionotropic glutamate receptor antagonists had no effect on neurotoxicity. Homocysteine alone also had no effect on neuronal glutathione levels. These studies suggest that increased copper and/or homocysteine levels in the elderly could promote significant oxidant damage to neurons and may represent additional risk factor pathways which conspire to produce AD or related neurodegenerative conditions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...