GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Singh, Vikas  (2)
  • 2020-2024  (2)
  • 1
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 6 ( 2021-04-01), p. 5235-5251
    Abstract: Abstract. We have estimated the spatial changes in NO2 levels over different regions of India during the COVID-19 lockdown (25 March–3 May 2020) using the satellite-based tropospheric column NO2 observed by the Ozone Monitoring Instrument (OMI) and the Tropospheric Monitoring Instrument (TROPOMI), as well as surface NO2 concentrations obtained from the Central Pollution Control Board (CPCB) monitoring network. A substantial reduction in NO2 levels was observed across India during the lockdown compared to the same period during previous business-as-usual years, except for some regions that were influenced by anomalous fires in 2020. The reduction (negative change) over the urban agglomerations was substantial (∼ 20 %–40 %) and directly proportional to the urban size and population density. Rural regions across India also experienced lower NO2 values by ∼ 15 %–25 %. Localised enhancements in NO2 associated with isolated emission increase scattered across India were also detected. Observed percentage changes in satellite and surface observations were consistent across most regions and cities, but the surface observations were subject to larger variability depending on their proximity to the local emission sources. Observations also indicate NO2 enhancements of up to ∼ 25 % during the lockdown associated with fire emissions over the north-east of India and some parts of the central regions. In addition, the cities located near the large fire emission sources show much smaller NO2 reduction than other urban areas as the decrease at the surface was masked by enhancement in NO2 due to the transport of the fire emissions.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 24, No. 2 ( 2024-01-19), p. 789-806
    Abstract: Abstract. Exposure to air pollution is a leading public health risk factor in India, especially over densely populated Delhi and the surrounding Indo-Gangetic Plain. During the post-monsoon seasons, the prevailing north-westerly winds are known to influence aerosol pollution events in Delhi by advecting pollutants from agricultural fires as well as from local sources. Here we investigate the year-round impact of meteorology on gaseous nitrogen oxides (NOx=NO+NO2). We use bottom-up NOx emission inventories (anthropogenic and fire) and high-resolution satellite measurement based tropospheric column NO2 (TCNO2) data, from S5P aboard TROPOMI, alongside a back-trajectory model (ROTRAJ) to investigate the balance of local and external sources influencing air pollution changes in Delhi, with a focus on different emissions sectors. Our analysis shows that accumulated emissions (i.e. integrated along the trajectory path, allowing for chemical loss) are highest under westerly, north-westerly and northerly flow during pre-monsoon (February–May) and post-monsoon (October–February) seasons. According to this analysis, during the pre-monsoon season, the highest accumulated satellite TCNO2 trajectories come from the east and north-west of Delhi. TCNO2 is elevated within Delhi and the Indo-Gangetic Plain (IGP) to the east of city. The accumulated NOx emission trajectories indicate that the transport and industry sectors together account for more than 80 % of the total accumulated emissions, which are dominated by local sources ( 〉 70 %) under easterly winds and north-westerly winds. The high accumulated emissions estimated during the pre-monsoon season under north-westerly wind directions are likely to be driven by high NOx emissions locally and in nearby regions (since NOx lifetime is reduced and the boundary layer is relatively deeper in this season). During the post-monsoon season the highest accumulated satellite TCNO2 trajectories are advected from Punjab and Haryana, where satellite TCNO2 is elevated, indicating the potential for the long-range transport of agricultural burning emissions to Delhi. However, accumulated NOx emissions indicate local (70 %) emissions from the transport sector are the largest contributor to the total accumulated emissions. High local emissions, coupled with a relatively long NOx atmospheric lifetime and shallow boundary layer, aid the build-up of emissions locally and along the trajectory path. This indicates the possibility that fire emissions datasets may not capture emissions from agricultural waste burning in the north-west sufficiently to accurately quantify their influence on Delhi air quality (AQ). Analysis of daily ground-based NO2 observations indicates that high-pollution episodes ( 〉 90th percentile) occur predominantly in the post-monsoon season, and more than 75 % of high-pollution events are primarily caused by local sources. But there is also a considerable influence from non-local (30 %) emissions from the transport sector during the post-monsoon season. Overall, we find that in the post-monsoon season, there is substantial accumulation of high local NOx emissions from the transport sector (70 % of total emissions, 70 % local), alongside the import of NOx pollution into Delhi (30 % non-local). This work indicates that both high local NOx emissions from the transport sector and the advection of highly polluted air originating from outside Delhi are of concern for the population. As a result, air quality mitigation strategies need to be adopted not only in Delhi but in the surrounding regions to successfully control this issue. In addition, our analysis suggests that the largest benefits to Delhi NOx air quality would be seen with targeted reductions in emissions from the transport and agricultural waste burning sectors, particularly during the post-monsoon season.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2024
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...