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Abstract. We have estimated the spatial changes in NO2 lev-
els over different regions of India during the COVID-19 lock-
down (25 March–3 May 2020) using the satellite-based tro-
pospheric column NO2 observed by the Ozone Monitoring
Instrument (OMI) and the Tropospheric Monitoring Instru-
ment (TROPOMI), as well as surface NO2 concentrations
obtained from the Central Pollution Control Board (CPCB)
monitoring network. A substantial reduction in NO2 levels
was observed across India during the lockdown compared
to the same period during previous business-as-usual years,
except for some regions that were influenced by anomalous
fires in 2020. The reduction (negative change) over the ur-
ban agglomerations was substantial (∼ 20 %–40 %) and di-
rectly proportional to the urban size and population density.
Rural regions across India also experienced lower NO2 val-
ues by ∼ 15 %–25 %. Localised enhancements in NO2 asso-
ciated with isolated emission increase scattered across India
were also detected. Observed percentage changes in satellite
and surface observations were consistent across most regions
and cities, but the surface observations were subject to larger
variability depending on their proximity to the local emission
sources. Observations also indicate NO2 enhancements of up
to∼ 25 % during the lockdown associated with fire emissions
over the north-east of India and some parts of the central re-
gions. In addition, the cities located near the large fire emis-
sion sources show much smaller NO2 reduction than other

urban areas as the decrease at the surface was masked by en-
hancement in NO2 due to the transport of the fire emissions.

1 Introduction

Nitrogen oxides, NOx (NO+NO2), are one of the major
air pollutants, as defined by various national environmen-
tal agencies across the world, due to their adverse impact
on human health (Mills et al., 2015). Furthermore, tropo-
spheric levels of NOx can affect tropospheric ozone forma-
tion (Monks et al., 2015), contribute to secondary aerosol
formation (Lane et al., 2008) and acid deposition, and im-
pact climatic cycles (Lin et al., 2015). The major anthro-
pogenic sources of NOx emissions include the combustion of
fossil fuels in road transport, aviation, shipping, industries,
and thermal power plants (e.g. USEPA and CATC, 1999;
Ghude et al., 2013; Hilboll et al., 2017). Other sources in-
clude open biomass burning (OBB), mainly large-scale for-
est fires (e.g. Hilboll et al., 2017), lightning (e.g. Solomon et
al., 2007), and emissions from soil (e.g. Ghude et al., 2010).
NOx hotspots are often observed over regions with large ther-
mal power plants and industries as well as urban areas with
significant traffic volumes causing large localised emissions
(e.g. Prasad et al., 2012; Hilboll et al., 2013; Ghude et al.,
2013).
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With growing scientific awareness of the adverse impacts
of air pollution, the number of air quality monitoring sta-
tions has expanded to over 10 000 across the globe (Ven-
ter et al., 2020). Additionally, multiple satellite instruments
such as the Global Ozone Monitoring Instrument (GOME)
on ERS-2, the Scanning Imaging Absorption Spectrom-
eter for Atmospheric Cartography (SCIAMACHY, 2002–
2012) on Envisat, the Ozone Monitoring Instrument (OMI,
2005–present) on Aura, GOME-2 (2007–present) on MetOp,
and the TROPOspheric Monitoring Instrument (TROPOMI,
2017–present) on Sentinel-5P (S5P) have monitored NO2
pollution from the space for over 2 decades. Surface sites typ-
ically measure NO2 in concentration quantities (e.g. in units
of µg m−3), but satellite NO2 measurements are retrieved as
integrated vertical columns (e.g. tropospheric vertical col-
umn density, VCDtrop). The latter is preferred for studying
NO2 trends and variabilities because of global spatial cov-
erage and spatio-temporal coincidence with ground-based
measurements (Martin et al., 2006; Kramer et al., 2008; Lam-
sal et al., 2010; Ghude et al., 2011). NO2 has been reported
to increase in south Asian countries (Duncan et al., 2016;
Hilboll et al., 2017; ul-Haq et al., 2017) and decrease over
Europe (van der A et al., 2008; Curier et al., 2014; Georgou-
lias et al., 2019) and the United States (Russell et al., 2012;
Lamsal et al., 2015). In the case of India, a tropospheric NO2
increase was observed during the 2000s (e.g. Mahajan et al.,
2015), but since 2012 it has either stabilised or even declined
owing to the combined effect of economic slowdown and
adoption of cleaner technology (e.g. Hilboll et al., 2017).
However, thermal power plants, megacities, large urban ar-
eas, and industrial regions remain NO2 emission hotspots
(Ghude et al., 2008, 2013; Prasad et al., 2012; Hilboll et al.,
2013, 2017; Duncan et al., 2016). Moreover, despite the mea-
sures taken to control NOx emissions, urban areas often ex-
ceed national ambient air quality standards in India (Sharma
et al., 2013; Nori-Sarma et al., 2020; Hama et al., 2020) and
thus require a detailed scenario analysis.

The nationwide lockdown in various countries during
March–May 2020, due to the outbreak of COVID-19, re-
duced traffic and industrial activities, leading to a signifi-
cant reduction of NO2. Studies using space-based and surface
observations of NO2 have reported reductions in the range
of ∼ 30 %–60 % for China, South Korea, Malaysia, West-
ern Europe, and the USA (Bauwens et al., 2020; Kanniah
et al., 2020; Muhammad et al., 2020; Tobías et al., 2020;
Dutheil et al., 2020; Liu et al., 2020; Huang and Sun, 2020;
Naeger and Murphy, 2020; Barré et al., 2020; Goldberg et
al., 2020) against the same period in previous years, with the
observed reductions strongly linked to the restrictions im-
posed on vehicular movement. The lockdown in India was
implemented in various phases starting on the 25 March 2020
(MHA, 2020; Singh et al., 2020). The lockdown restrictions
in the first two phases (phase 1: 25 March–14 April 2020
and phase 2: 15 April–3 May 2020) were the strictest, dur-
ing which all non-essential services and offices were closed,

and the movement of the people was restricted, resulting in a
considerable reduction in the anthropogenic emissions. The
restrictions were relaxed in a phased manner from the third
phase onwards in less affected areas by permitting activities
and partial movement of people (MHA, 2020).

A decline in NO2 levels over India during the lockdown
has been reported from both surface observations (Singh et
al., 2020; Sharma et al., 2020; Mahato et al., 2020) and satel-
lite observations (ESA, 2020; Biswal et al., 2020; Siddiqui et
al., 2020; Pathakoti et al., 2020) against the previous year or
average of a few previous years. A detailed study by Singh
et al. (2020) based on 134 sites across India reported a de-
cline of ∼ 30 %–70 % in NO2 during lockdown with respect
to the mean of 2017–2019, with the largest reduction being
observed during peak morning traffic hours and late evening
hours. While Sharma et al. (2020) reported a smaller de-
crease (18 %) in NO2 for selected sites against the levels dur-
ing 2017–2019, Mahato et al. (2020) found a decrease of over
50 % in Delhi for the first phase of lockdown against previ-
ous years (2017–2019), which was also confirmed by Singh
et al. (2020) for the extended period of analysis. The satellite-
based studies by Biswal et al. (2020) and Pathakoti et al.
(2020) estimated the change in NO2 levels using OMI ob-
servations, whereas Siddiqui et al. (2020) used TROPOMI to
compute the change over eight major urban centres of India.
Biswal et al. (2020) reported that the average OMI NO2 over
India decreased by 12.7 %, 13.7 %, 15.9 %, and 6.1 % dur-
ing the subsequent weeks of the lockdown relative to similar
periods in 2019. Similarly, Pathakoti et al. (2020) reported a
decrease of 17 % in average OMI NO2 over India compared
to the pre-lockdown period and a decrease of 18 % against
the previous 5-year average. Moreover, both studies reported
a larger reduction of more than 50 % over Delhi. Similarly,
Siddiqui et al. (2020) also reported an average reduction of
46 % in the eight cities during the first lockdown phase with
respect to the pre-lockdown phase. While recent studies have
used either only satellite observations or only surface obser-
vations, this study goes further by adopting an integrated ap-
proach by combining both measurement types to investigate
NO2 level changes over India in response to the COVID-
19 pandemic using OMI, TROPOMI, and surface observa-
tions over different regions. As both OMI and TROPOMI
have similar local overpass times of approximately 13:30
(Penn and Holloway, 2020; van Geffen et al., 2020), diur-
nal influences on the retrievals of NO2 for both instruments
are similar. Moreover, as both instruments use nearly simi-
lar retrieval schemes (i.e. differential optical absorption spec-
troscopy, DOAS), their NO2 measurements are believed to be
comparable with a suitable degree of confidence (van Geffen
et al., 2020; Wang et al., 2020). Any product differences are
likely to be caused by inconsistent inputs/processing of the
retrievals (e.g. derivation of the stratospheric slant column,
the a priori tropospheric NO2 profile, and the treatment of
aerosols/clouds in the calculation of the air mass factor; van
Geffen et al., 2019; Lamsal et al., 2021).
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We estimate the changes in the NO2 levels over differ-
ent land-use categories (i.e. urban, cropland, and forestland)
and urban sizes. In addition to this, we investigate the spatial
agreement between population density and NO2 spatial vari-
ability observed at the surface. A key benefit of this study
will be to understand and assess the impact of reduced an-
thropogenic activity on NO2 levels, not only over the urban
areas but also over the rural areas (cropland and forestland).
This study thus provides an improved understanding of the
spatial variations of tropospheric NO2 for future air quality
management in India.

2 Data and methodology

2.1 Data

Satellite observations of VCDtrop NO2 were obtained from
OMI (2016–2020) and TROPOMI (2019–2020). Surface
NO2 observations (2016–2020) at 139 sites across India were
from the Central Pollution Control Board (CPCB). The pe-
riod from 25 March to 3 May each year is defined as the
analysis period. Average NO2 levels during the analysis pe-
riod in 2020 and previous years are referred to as lockdown
(LDN) NO2 and business-as-usual (BAU) NO2, respectively.
The BAU years for OMI and CPCB are 2016–2019, whereas
for TROPOMI the BAU year is 2019 because of the unavail-
ability of earlier observations.

NO2 data were analysed for six geographical regions
(north, Indo-Gangetic Plain (IGP), north-west, north-east,
central, and south) of India (Fig. S1 in the Supplement). The
NO2 changes over various land-use categories (i.e. urban,
cropland, and forestland) have been analysed using spatially
collocated land-use land cover (LULC) data (NRSC, 2012)
and OMI- and TROPOMI-observed VCDtrop NO2. Visible
Infrared Imaging Radiometer Suite (VIIRS) fire count data
were used to study the fire anomalies during the LDN and
other analysis periods.

2.1.1 OMI NO2

OMI has a nadir footprint of approximately 13 km× 24 km,
measuring in the ultraviolet–visible (UV–Vis) spectral range
of 270–500 nm (Boersma et al., 2011). It uses differen-
tial optical absorption spectroscopy (DOAS) to retrieve
VCDtrop (i.e. VCDtrop is the difference between the to-
tal and stratospheric slant columns divided by the tropo-
spheric air mass factor; Boersma et al., 2004). Here, we
use the OMI NO2 30 % Cloud-Screened Tropospheric Col-
umn L3 Global Gridded (Version 4) at a 0.25◦× 0.25◦ (∼
25 km× 25 km) spatial grid from the NASA Goddard Earth
Sciences Data and Information Services Center (GESDISC),
available at (https://disc.gsfc.nasa.gov/datasets/OMNO2d_
003/summary, last access: 1 January 2021). Details of the
retrieval scheme and OMI data product Version 4 are dis-
cussed by Krotkov et al. (2019) and Lamsal et al. (2021) and

for older versions by, for example, Celarier et al. (2008) and
Krotkov et al. (2017).

2.1.2 TROPOMI NO2

TROPOMI has a nadir-viewing spectral range of 270–
500 nm (UV–Vis), 675–775 nm (near-infrared, NIR), and
2305–2385 nm (shortwave-infrared, SWIR). In the UV-Vis
and NIR wavelengths, TROPOMI has an unparalleled spa-
tial footprint of 3.5 km× 7.0 km, along with 7 km× 7 km in
the SWIR (Veefkind et al., 2012). Details of the TROPOMI
scheme and data are discussed by Eskes et al. (2019) and Van
Geffen et al. (2019). The TROPOMI VCDtrop NO2 over India
for the analysis period was obtained at 3.5 km× 7 km resolu-
tion from http://www.temis.nl/airpollution/no2.php (last ac-
cess: 25 December 2020) and re-gridded at a spatial resolu-
tion of 0.05◦× 0.05◦ (∼ 5 km× 5 km) based on the gridding
methodology of Pope et al. (2018). The source data are fil-
tered to remove pixels with QA (quality assurance) values
greater than 50, which removes cloud fraction less than 0.2,
part of the scenes covered by snow/ice, errors, and problem-
atic retrievals (Eskes et al., 2019).

Although substantial differences are found between OMI
and TROPOMI (such as the differences in the orbit and spa-
tial resolution; van Geffen et al., 2020), they exhibit good
correlation with the surface observations (Chan et al., 2020;
Wang et al., 2020) but are ∼ 30 % lower than the multi-axis
differential optical absorption spectroscopy (MAX-DOAS)
observations. Overall, TROPOMI has been reported to be su-
perior to OMI (van Geffen et al., 2020). Detailed descriptions
of the recent retrieval schemes used for TROPOMI and OMI
data products are provided in van Geffen et al. (2019) and
Lamsal et al. (2021), respectively. Analysis of differences be-
tween these two satellite data products is beyond the scope of
this study.

2.1.3 Surface NO2 concentration

The hourly averaged surface NO2 concentration at 139 sites
(Fig. S1) for 2016–2020 across India was acquired from
the CPCB CAAQMS (Continuous Ambient Air Quality
Monitoring Stations) portal (https://app.cpcbccr.com/ccr/#/
caaqm-dashboard-all/caaqm-landing, last access: 1 Decem-
ber 2020). The data were further quality-controlled by re-
moving the outliers, constant values, and sites with less than
60 % data during the analysis period. Details of the surface
observations are explained in Singh et al. (2020).

2.1.4 Land use land cover data

The high-resolution (50 m× 50 m) LULC data mapped with
level-III classification for 18 major categories (NRSC,
2012) were obtained from the Bhuvan geo-platform (https:
//bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php, last
access: 3 January 2020) of the Indian Space Research Or-
ganisation (ISRO). To quantify the changes over urban, crop,
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and forest areas, the OMI and TROPOMI NO2 at urban grids
(category 1), cropland (category 2 to 5), and forestland (cat-
egory 7 to 10) were extracted for further analysis. In order
to match the OMI and TROPOMI grid resolution with the
Indian LULC, the dominant LULC was considered within
the OMI and TROPOMI grid. Figure S2 shows the high-
resolution LULC data used in this study for cropland, forest-
land, and urban areas separately. Urban areas were further di-
vided into four sizes (10–50, 50–100, 100–200, and greater
than 200 km2) to study the change in NO2 with respect to the
size of the urban agglomeration.

2.1.5 VIIRS fire counts

The VIIRS aboard the Suomi National Polar-orbiting Part-
nership (S-NPP) satellite provides daily global fire count at a
375 m× 375 m spatial resolution (Schroeder et al., 2014; Li
et al., 2018). The fire count data over India during the analy-
sis period from 2016 to 2020 were obtained from the FIRMS
(Fire Information for Resource Management System) web
portal (https://firms.modaps.eosdis.nasa.gov/download/, last
access: 25 December 2020). The fire count data were grid-
ded at 5 km× 5 km for each year by summing the fire counts
falling on each spatially overlapping grid. The burnt area was
calculated from the fire counts by multiplication by the VI-
IRS grid size (Prosperi et al., 2020).

2.1.6 Population data

The gridded population density (people per hectare, pph)
data for 2020 were taken from Worldpop. (2017). World-
pop estimates the population density to be approximately
100 m× 100 m (near the Equator) by disaggregating census
data for population mapping using a random forest estima-
tion technique with remotely sensed and ancillary data. De-
tails of the population mapping methodology can be found in
Stevens et al. (2015).

2.1.7 Google mobility change

Google estimated the change in people’s movement from
15 February 2020 onwards based on Google Maps informa-
tion on people’s locations at places of retail and recreation,
grocery and pharmacy stores, parks, transit stations, work-
places, and residential places, etc. The changes were esti-
mated with reference to the baseline days that represent a
normal value for that day of the week. The baseline day is
the median value from the 5-week period 3 January–6 Febru-
ary 2020. The Google mobility change dataset provided an
excellent proxy for the anthropogenic activity change and
has therefore been used for several purposes of air quality
studies such as lockdown emission estimation and temporal
relation with pollutant species (Archer et al., 2020; Forster
et al., 2020; Gama et al., 2020; Guevara et al., 2021) during
the lockdown period of 2020. The Google mobility data and
reports are available from Google (2020).

2.1.8 Meteorological data

The Copernicus Climate Change Service (C3S) provides the
ERA5 reanalysis (Hersbach et al., 2020) meteorological data
with an improved vertical, temporal, and spatial coverage.
The monthly mean meteorological data (temperature, wind
speed, and planetary boundary layer height) at 0.25◦× 0.25◦

resolution for March, April, and May 2016–2020 were used
for the analysis. For details, see https://www.ecmwf.int/
en/forecasts/datasets/reanalysis-datasets/era5 (last access:
25 January 2021).

2.1.9 Analysis methodology

The change in the NO2 levels for each analysis period has
been calculated by subtracting the BAU NO2 from LDN
NO2. We calculate the percentage change (D) using the fol-
lowing equation:

D =
(LDN−BAU)

BAU
× 100.

The analysis was done over the whole of India as well as over
the separately considered regions and selected LULC cate-
gories using the open-source geographic information system
QGIS.

3 Results and discussion

3.1 Meteorological variations

Air pollutant concentration over a region is governed by
emission sources and prevailing meteorological conditions.
Meteorological factors (e.g. wind, temperature, radiation,
and rainfall) can affect the NO2 concentration (Barré et
al., 2020) as well as biogenic emissions (Guenther et al.,
2012). The meteorological variations between years can
cause ∼ 15 % variations in monthly column NO2 values
(Goldberg et al., 2020). However, the NO2 levels are likely
to be similar under similar meteorological conditions. Re-
cent studies (e.g. Singh et al., 2020; Navinya et al., 2020;
Sharma et al., 2020) have shown that meteorological condi-
tions remained relatively consistent over recent years during
the lockdown period and therefore assumed that the changes
in the pollution levels during the lockdown are primarily
driven by the emission changes. However, it is important to
highlight the meteorological differences during the study pe-
riod to assess the uncertainties associated with meteorologi-
cal differences.

We used monthly mean ERA-5 reanalysis data (Hersbach
et al., 2020) at 0.25◦× 0.25◦ resolution for March, April, and
May for BAU as well as LDN periods at the satellite local
overpass time. We considered temperature (T ), wind speed
(WS), and boundary layer height (BLH) in our analysis. Fig-
ure 1a–c show the spatial variation in these quantities during
BAU (left column), LDN (middle column) and the calculated
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difference (LDN−BAU, right column). The probability den-
sity function (PDF) using kernel density estimation (KDE)
of the meteorological parameters is also shown (Fig. S3) for
the BAU (blue) and LDN (red). KDE is a non-parametric
way to estimate the PDF. The peak of the distribution shows
the most probable value, and the width of the distribution
shows the variability. The temperature difference between
LDN and BAU shows a slight reduction (∼ 0–3 K range) dur-
ing the lockdown. Wind speed values also show a reduction
(up to 2 m s−1) during the lockdown, although the reduction
is mainly seen in certain parts of central India. Reduction in
the BLH is also seen in most parts of India. In general, the
meteorological parameters during the lockdown were simi-
lar. However, the PDF (Fig. S3) during BAU and LDN shows
a small reduction (less than 5 %) in temperature and wind
speed and ∼ 10 % reduction in BLH. Although small, this
weather variability can further add to the variability in the
NO2 levels. However, during the lockdown in India, the NO2
change was more sensitive to the emission change than the
meteorology variability. Shi et al. (2021) compared the de-
trended and de-weathered change in NO2 observed over se-
lected cities in India, Europe, China, and the USA. While the
reduction in NO2 was highest for Delhi (∼ 50 %), the differ-
ence between a detrended and de-weathered change in NO2
observed over Delhi was much smaller (∼ 2 %) as compared
to the difference calculated for other cities. This suggests that
weather variability did not have much impact on NO2 levels
over India and that most of the changes were driven by a
change in the anthropogenic emissions.

3.2 Fire count anomalies during the lockdown

Forest fires are an important source of surface NO2 and
VCDtrop NO2 (Sahu et al., 2015; Yarragunta et al., 2020),
depending on the occurrence time and the intensity of fires
(Mebust et al., 2011). Also, as the forest fire plumes can
be transported longer distances (Alonso-Blanco et al., 2018),
forest-fire-related NO2 can contribute to regional and global
air pollution. In India, forest fires are prevalent as 36 %
of the country’s forest cover is prone to frequent fires, of
which nearly 10 % is extremely to very highly prone to fires
(ISFR, 2019). Long-term satellite-derived fire counts suggest
that Indian fire activities typically peak during March–May
(Sahu et al., 2015), predominantly over the north, central, and
north-east regions (Venkataraman et al., 2006; Ghude et al.,
2013). However, the spatial and temporal distribution of fire
events is largely heterogeneous (Sahu et al., 2015), meaning
an abrupt increase or decrease in fire activity could signifi-
cantly impact NO2 levels over anomalous regions during the
lockdown.

An investigation of fire counts during the 2020 lockdown
(LDN analysis period), when compared with the correspond-
ing 2016–2020 average, highlights a substantial decrease
over the eastern part of central India and an increase over the
western part of central India and the north-east. In Fig. 2a

widespread fire activity (counts of 10–50) is shown across
India, such as the central region (Madhya Pradesh, Chhattis-
garh, Odisha), parts of Andhra Pradesh, the Western Ghats
in Maharashtra, and the north-east region (Assam, Megha-
laya, Tripura, Mizoram, and Manipur). The fire anomaly dur-
ing the lockdown (Fig. 2b) shows positive fire counts (5–20)
over the north-east region, west of Madhya Pradesh in cen-
tral India, and scattered locations in South India. The neg-
ative fire anomalies (−20 to −5) observed over the central
region (Chhattisgarh and Odisha) suggest a decrease in fire
activity during the 2020 lockdown period. To minimise the
impact of fire emission in our analysis, we have considered
the grids with zero fire anomaly to assess the changes in
NO2 during the lockdown. By considering the grids with zero
fire anomaly, we excluded almost all the grids which have
recorded fire activity during the analysis period. However,
the impact of long-range transport of forest fire plumes can-
not be ignored.

3.3 VCDtrop NO2 over India during lockdown period

The spatial distribution of VCDtrop NO2 is largely deter-
mined by local emission sources; therefore, NO2 hotspots
are found over urban regions, thermal power plants, and
major industrial corridors. For the Indian subcontinent,
maximum NO2 is observed during winter to pre-monsoon
(December–May) and minimum NO2 during the monsoon
(June–September). Region-specific peaks such as the win-
tertime peak (December–January) in the IGP are associ-
ated with anthropogenic emissions, or the summertime peak
(March–April) in central India and north-east India is associ-
ated with enhanced biomass burning activities (Ghude et al.,
2008, 2013; Hilboll et al., 2017).

We compare the LDN mean VCDtrop NO2 with the BAU
mean for OMI and TROPOMI. The spatial distribution of
the BAU and LDN VCDtrop NO2 observed by OMI and
TROPOMI is shown in Fig. 3a–d. The mean VCDtrop NO2
from the two instruments shows similar spatial distributions
during the LDN and BAU analysis period. In BAU years, the
NO2 hotspots are seen over the large fossil-fuel-based ther-
mal power plants (∼ 1000× 1013 molec. cm−2), urban areas
(∼ 400–700× 1013 molec. cm−2), and industrial areas. Scat-
tered sources are also present in western India, covering the
industrial corridor of Gujarat and Mumbai, various locations
of south India, and densely populated areas (e.g. IGP). The
spatial distribution showed significant changes during the
lockdown in 2020. The details of absolute and percentage
changes are discussed in the subsequent sections.

3.4 Changes observed by OMI and TROPOMI

There is a substantial reduction in VCDtrop NO2 between
the LDN and BAU (Fig. 4a and c). A large reduction in the
number of hotspots, mainly urban areas, is seen in both OMI
and TROPOMI observations. However, hotspots due to coal-
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Figure 1. Spatial map showing the variation in surface meteorological parameters (a temperature, b wind speed, and c BLH) from ERA-5
by comparing BAU (left column), LDN (middle column), and observed difference (LDN−BAU, right column).

Figure 2. Spatial distribution of the 5 km× 5 km gridded VIIRS fire counts. (a) Average fire counts during the analysis period (25 March–
3 May 2016–2020). (b) Gridded fire anomaly during the lockdown in 2020.
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Figure 3. Spatial distribution of mean VCDtrop NO2 (molec. cm−2)
during the analysis period (25 March–3 May) for (a) OMI NO2 dur-
ing business as usual (BAU, 2016–2019), (b) OMI NO2 during the
lockdown (LDN, 2020), (c) TROPOMI NO2 during BAU (2019),
and (d) TROPOMI NO2 during LDN (2020).

based power plants remain during the lockdown as electricity
production was continued. Over the NO2 hotspots, there has
been an absolute decrease of over 150× 1013 molec. cm−2

(∼ 250× 1013 molec. cm−2 over megacities) detected by
both OMI and TROPOMI. The rural VCDtrop NO2 has typi-
cally reduced by approximately 30–100× 1013 molec. cm−2,
representing a percentage decrease of 30 %–50 % for OMI
and 20 %–30 % for TROPOMI (Fig. 4b and d). For urban
regions, both OMI and TROPOMI see a decrease of approxi-
mately 50 %, but reductions in smaller urban areas are clearly
noticeable in the TROPOMI data, given its better spatial res-
olution. Both instruments observe an increase in VCDtrop
NO2 in the north-eastern regions and moderate enhancement
over the western and central regions. These enhancements
are linked with the biomass burning activities during this pe-
riod (Fig. 2).

Figure 4. (a, c) Absolute change and (b, d) percentage change in
VCDtrop NO2 during the analysis period for LDN year compared
to BAU years as observed by OMI (a, b) and TROPOMI (c, d).

3.5 Changes in NO2 over different land use types

Anthropogenic NOx emissions are typically more localised
in urban and industrial centres, while biogenic sources (e.g.
soil) are more important in rural regions. OBB activities peak
in March–April (Sahu et al., 2015) and represent more spo-
radic sources. As the lockdown is expected to have reduced
urban anthropogenic NOx sources (as shown in Fig. 4), it is
important to assess the lockdown impact over the rural re-
gions such as cropland and forestland as well. This section
estimates the changes in VCDtrop NO2 over different land
types such as cropland, forestland, and urban areas (Fig. S2).
Industrial emissions are often part of the urban agglomerates
scattered around the city and are part of urban emissions. To
minimise the impact of OBB emissions in our analysis, we
exclude grids with fire anomalies (Fig. 2) and those contain-
ing thermal power plants (Fig. S2d). However, absolute sep-
aration of the impact of long-range transportation is beyond
the scope of this study.

3.5.1 Changes over cropland and forestland

The changes in VCDtrop NO2 observed by OMI and
TROPOMI over the cropland (Fig. S2a) in different regions
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of India are shown in Fig. 5a and b and Table S1 in the
Supplement. A decline in VCDtrop NO2 has been observed
over croplands in all regions except for the north-east. A
higher percentage decline was observed over IGP and south
regions by both the satellites. While VCDtrop NO2 has de-
creased, prominent enhancements have been observed over
the north-east and few grids in central and north-west re-
gions. These enhancements can be attributed to the impact
of nearby forest fires (Fig. 2). The observed changes over
the forestland (Fig. S2c) over different regions of India are
shown in Fig. 5c–d and Table S1. The average VCDtrop NO2
has declined over forestland in all the regions except for the
north-east, where VCDtrop NO2 was enhanced due to the pos-
itive fire anomaly (Fig. 2) during the analysis period. It can
be noted that although we have taken the grids with zero fire
anomaly, the effect of a nearby grid exhibiting positive fire
anomaly cannot be ignored due to atmospheric dispersion
and mixing. The inter-comparison of the changes observed
by two satellites suggests that OMI data indicate a larger re-
duction in VCDtrop NO2 than TROPOMI in most of the re-
gions.

3.5.2 Changes over urban regions

We analysed the changes in VCDtrop NO2 over the urban
areas (Fig. S2b) in different regions of India. The calcu-
lated actual and percentage changes observed by OMI and
TROPOMI are shown in Fig. 6 and in Table S1. The mean
changes observed by OMI and TROPOMI show similar vari-
ations in different regions. The changes observed over urban
areas are larger than those observed over the forest and crop-
lands. In contrast to the cropland and forestland, TROPOMI
observed a larger reduction in VCDtrop NO2 than OMI in
most of the regions. Densely populated IGP with the largest
urban agglomeration shows the maximum change in VCDtrop
NO2 followed by the central and north-west regions. The
VCDtrop NO2 over the urban areas in the north-east region
is likely to be influenced by the nearby forest fires through
atmospheric dispersion and mixing, resulting in the enhance-
ment of VCDtrop NO2 over the urban grids.

We have also analysed the change in the VCDtrop NO2
over urban areas of different sizes. We have taken the ur-
ban areas of sizes more than 10 km2 and grouped them into
four bins of size 10–50, 50–100, 100–200, and greater than
200 km2. We then calculate the changes observed for all the
cities filling into the respective bins. Figure 6c–d show the
absolute and percentage change in VCDtrop NO2, as observed
by OMI and TROPOMI, respectively. A significant reduc-
tion of 50–150× 1013 molec. cm−2 (20–40 %) was observed
over the urban area of different sizes. The actual reduction in
VCDtrop NO2 is greater for the larger urban area, with peak
reductions for the urban area bin (> 200 km2) for both OMI
and TROPOMI. The greater reduction in the larger urban ar-
eas is mainly due to the reduction in local emission sources,

as evidenced by the Google mobility reduction, which is
higher for larger cities than the smaller ones (Fig. S6).

3.5.3 Changes over thermal power plants

Thermal power plants (TPPs) are the hotspots of NO2 pol-
lution. These are scattered across the nation, with the ma-
jority of them in Madhya Pradesh, Bihar, Uttar Pradesh,
Odisha, Gujarat, Chhattisgarh, West Bengal, and Tamil Nadu
(Fig. S2d). During the lockdown period, TPPs were still op-
erated to fulfil electricity demands. In this section, we anal-
yse the changes observed over TPPs. The changes in VCDtrop
NO2 observed by OMI and TROPOMI over the TPPs are
shown in Fig. S5. A decrease in mean VCDtrop NO2 levels
over TPPs has been observed that is in line with the power
sector report, which mentions that during April 2020, en-
ergy demand met for India decreased by 24 % as compared to
April 2019 (POSOCO, 2021). Also, there is a drop (∼ 30 %)
in thermal power production during the lockdown compared
to the respective period of 2019.

3.6 Inter-comparison of changes observed by OMI,
TROPOMI and surface observation

Figure 7a–b show the relationship of OMI and TROPOMI
NO2 with surface NO2 for the BAU and LDN periods, re-
spectively. During BAU, there are reasonable positive cor-
relations between the satellite instruments and the surface
sites (OMI: 0.48, 95 % CI 0.33–0.60 and TROPOMI: 0.52,
95 % CI 0.37–0.64). In LDN, these correlations drop to 0.36
(95 % CI 0.20–0.49) and 0.28 (95 % CI 0.12–0.43), respec-
tively. The decrease in the correlation during LDN could
be due to the decrease in the signal-to-noise ratio, poten-
tially linked with the primary reduction in urban NO2 lev-
els. We also determined the correlation between satellite-
and surface-observed changes during the lockdown (Fig. 7c),
finding values of 0.44 (95 % CI 0.28–0.57) for OMI and 0.49
(95 % CI 0.33–0.63) for TROPOMI. This indicates that the
lockdown NO2 reductions appear to be present in both mea-
surement types, providing us with confidence in the observed
changes detected in this study. The correlation observed over
India in this study is lower than that reported for the USA
(Lamsal et al., 2015). The low correlation between OMI
and surface NO2 has been reported previously by Ghude et
al. (2011). While they report the temporal correlation for a
single site, our study reports the spatial correlation represent-
ing the satellites’ ability to capture the spatial heterogene-
ity. One of the reasons for the lower correlation could be the
choice of surface station. Generally, urban background sites
are preferred for this kind of analysis. However, the surface
NO2 monitoring station type classification is not available for
the CPCB sites. Therefore, sites used in the analysis could be
potentially impacted by traffic emissions, resulting in lower
correlation. Another reason is that in situ measurements are
more sensitive to the local emission sources than remotely
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Figure 5. Observed change in VCDtrop NO2 between LDN and BAU from OMI and TROPOMI for different regions shown as (a) a violin
plot of the absolute change over cropland, (b) the percentage change over cropland, (c) a violin plot of the absolute change over forestland,
and (d) the percentage change over forestland. A violin plot is a combination of a box plot and a kernel density estimation (KDE) plot. KDE
is a non-parametric way to estimate the probability density function (PDF). The red lines in the violin plot show the interquartile range; the
blue line shows the median value; the yellow star shows the mean value. The vertical lines in the bar plot show the standard deviation. The
abbreviations NWest and NEast are for north-west and north-east regions, respectively.

Figure 6. Observed change in VCDtrop NO2 between LDN and BAU from OMI and TROPOMI for different regions shown as (a) a violin
plot of the absolute change over urban areas, (b) the percentage change over the urban area, (c) a violin plot of the observed change over
different sized urban areas, and (d) the percentage change over different sized urban areas.

sensed measurements and therefore have larger variability,
resulting in low correlation. Proper classification of the mon-
itoring stations could provide a better assessment of satellite-
based observations.

The LDN NO2 percentage change, observed by surface
and spatially co-located satellite measurements, is shown in
Fig. 8a for various Indian regions. For this comparison, the
number of available CPCB surface monitoring stations was

17, 15, 81, 25, and 1 for central, north-west, IGP, south,
and north-east regions (north region data not available), re-
spectively. Most of the CPCB stations are in urban areas, so
our results reflect changes in predominantly urban-sourced
NO2. At all surface sites in all regions, there was a per-
centage reduction greater than 20 % (Fig. 8a). Satellite ob-
servations show a similar trend except for the north-east re-
gion, where enhancements are due to forest fires. Both OMI
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Figure 7. Scatter plots between surface- and satellite-observed NO2 for (a) business as usual (BAU) and (b) lockdown (LDN). Panel (c)
shows a scatter plot of observed absolute change (LDN−BAU) in surface and satellite NO2. The values shown in the brackets are the
correlation coefficients with 95 % confidence intervals (CIs).

and TROPOMI observed the highest reduction (∼ 50 %) over
IGP. A smaller average reduction of ∼ 20 % over central In-
dia might be due to the aggregate effect of power plants, for-
est fires, and prevalent biomass burning activities during this
season. While the effect of forest fires can be observed in
the column NO2, its impact on the surface NO2 is minimal.
For the central, IGP, and south regions, the mean percentage
change observed by the surface monitoring station is compa-
rable to that observed by the satellites.

We have inter-compared the percentage change in NO2 ob-
served at the surface and satellite over the major Indian cities
(i.e. New Delhi, Chennai, Mumbai, Bangalore, Ahmedabad,
Kolkata, and Hyderabad; Fig. 8b). A significant reduction in
the range of ∼ 25 %–75 % is observed, consistent in all ob-
servational sources used in this study. A similar reduction
observed by the satellites over the cities in other parts of
the world has been reported (Tobías et al., 2020; Naeger and
Murphy, 2020; Kanniah et al., 2020; Huang and Sun, 2020).
The satellites observe the largest reduction over Delhi and the
smallest over Kolkata. While the observed decline is com-
parable for cities, Ahmedabad and Kolkata showed smaller
declines than observed by ground measurements. Also, the
reduction observed at the surface has a larger spatial vari-
ability than the one observed from the space. This is poten-
tially linked to the influence of the local emissions which
could not be detected by the space-based instruments be-
cause of relatively large satellite footprints. The results of
percentage change observed by OMI are consistent with the
change reported by Pathakoti et al. (2020), although Sid-
diqui et al. (2020) reported a higher decline of NO2 using
TROPOMI. This is because we computed the changes be-
tween lockdown and BAU during the same period of the year,
whereas Siddiqui et al. (2020) estimated the changes between
the pre-lockdown NO2 and the lockdown NO2, which in-
cludes the seasonal component of NO2. We have also anal-
ysed the changes in VCDtrop NO2 observed by both OMI
and TROPOMI for the other major cities (Guttikunda et al.,

2019), as shown in Fig. S4. A reduction of over 20 % was ob-
served in most cities except for a few in north-east and central
India. Cities showing enhancement or smaller reductions re-
flect the enhanced fire activities in the north-east and central
Indian regions. TROPOMI can capture the reduction over the
cities near the fire-prone areas (e.g. Indore and Bhopal) be-
cause of its higher spatial resolution.

3.7 Correlation of tropospheric columnar NO2 with
the population density

In this section, we examine the VCDtrop NO2 and pop-
ulation relationship for India except where fire anomalies
or large thermal power plants existed. The scatter density
plots between VCDtrop NO2 and population density for the
BAU and LDN analysis period are shown in Fig. 9 for OMI
and TROPOMI. The data were log-transformed to establish
the log–log relationship as neither dataset is normally dis-
tributed. As the observed changes had negative values, this
log transformation was obtained by adding a constant value
(Ekwaru and Veugelers, 2018), which was later subtracted
when plotting to display the corresponding NO2 values. Both
OMI and TROPOMI NO2 show a similar relationship with
the population density, with correlations of∼ 0.65 during the
LDN and BAU periods, suggesting a strong dependence upon
the population (i.e. anthropogenic emissions). The slopes of
the lines in Fig. 9a, b, d, and e show that VCDtrop NO2 fol-
lows a power-law scaling with population density (Lamsal et
al., 2013). During BAU, the VCDtrop NO2 observed over a
grid increased by factors of 100.28

= 1.9 and 100.20
= 1.58

for OMI and TROPOMI, respectively, with a 10-fold in-
crease in the population density. The rate of increase of the
VCDtrop NO2 during LDN was 100.23

= 1.7 and 100.16
=

1.45 times for OMI and TROPOMI, respectively, which was
lower than BAU. The correlation during the LDN period was
marginally lower than the BAU period. This could be due to
a larger reduction in the NO2 levels in the densely populated
grids. The changes observed in the VCDtrop NO2 during the
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Figure 8. (a) Box plot showing the percentage change between LDN and BAU in NO2 levels observed by ground and satellite measurements
at CPCB monitoring locations in different regions. (b) Bar chart showing the percentage change in NO2 levels observed in megacities in
India for the same measurements as panel (a). The vertical line in the bar chart is the standard deviation.

LDN (Fig. 9c and f) were negatively correlated (i.e. reduc-
tion was positively correlated) with the population density.
The linear relation suggests an increase in the reduction with
an increase in the population density; however, some grids
exhibit enhancements in VCDtrop NO2 due to the local emis-
sions.

3.8 Linking the mobility change with NO2 change

In order to link the observed reduction in NO2 levels with
the traffic emissions over the urban areas, Fig. 10 shows
the 7 d moving average of the daily percentage change ob-
served by OMI, TROPOMI, and CPCB across urban India
from 1 March to 31 May 2020 against the Google mobil-
ity percentage reduction for three mobility categories: tran-
sit stations, workplace, and residential. Transit stations and
workplace, proxies for traffic emissions (Forster et al., 2020),
show a sharp decline (∼ 70 %) due to the lockdown. The sig-
natures of reduced traffic can be seen even before the start
of lockdown in mid-March 2020. The decrease in the work-
places resulted in the enhancement (25 %–30 %) of people
at a residential location. The percentage reductions observed
by satellites and surface monitoring are consistent with each
other and follow the same trend of the workplaces and tran-
sit stations. The reductions observed by satellites and surface
monitoring are ∼ 20 % lower than the reductions in work-
places and transit stations, which are compensated for by
the enhancement in residential emissions. Surface (CPCB)
measurements exhibit higher correlation (∼ 0.9 and 0.8, with
and without moving average) with the mobility reduction
compared to the satellite observation, which has a relatively
weaker correlation (∼ 0.8 and 0.5). The positive correlation
of NO2 reduction with workplaces and transit stations sug-
gests that the reduction observed over the urban areas was
linked with reduced traffic emissions due to travel restrictions
for COVID-19 containment. Moreover, the mobility reduc-

tion was higher for larger cities as compared to the smaller
ones (Fig. S6).

3.9 Limitations of this study

This study has few limitations that need to be considered
while interpreting the results. The observed changes in the
NO2 levels are the combined effect of changes in the emis-
sions, local meteorology, large-scale dynamics, and non-
linear chemistry. The variability in NO2, caused by weather
patterns and non-linear chemistry is not included in the
present work. Our study does not distinguish the differences
in the upwind and downwind transport of plumes originating
from urban areas and thermal power plants. Moreover, the es-
timates can be biased by the forest-fire plumes, which can be
transported over a long distance. These limitations warrant
a detailed modelling study to quantify the impact of long-
range transport of plumes in the drastic reduction of urban
emissions. One of the limitations arises due to the unavail-
ability of the surface monitoring classification according to
its location and vicinity of the local sources, which restricted
a proper assessment of the space-based NO2 observation. To
overcome this limitation, proper classification of the moni-
toring stations (Geiger et al., 2013) based on the environment
type and vicinity of the sources will be helpful in air quality
assessment.

4 Conclusions and discussion

The changes in NO2 levels over India during the COVID-
19 lockdown (25 March–3 May 2020) have been studied
using satellite-based VCDtrop NO2 observed by OMI and
TROPOMI and surface NO2 concentrations obtained from
CPCB. The changes between lockdown (LDN) and the same
period during business-as-usual (BAU) years have been es-
timated over different land-use categories (e.g. urban, crop-
land, and forestland) across six geographical regions of In-

https://doi.org/10.5194/acp-21-5235-2021 Atmos. Chem. Phys., 21, 5235–5251, 2021



5246 A. Biswal et al.: COVID-19 lockdown-induced changes in NO2 levels

Figure 9. Scatter density plot between the VCDtrop NO2 (×1013 molec. cm−2) and population density (pph) for the analysis period in
different years. (a) Business as usual (BAU, 2016–2019) observed by OMI; (b) lockdown (LDN, 2020) observed by OMI; (c) changes
(LDN−BAU) observed by OMI; (d) BAU (2019) observed by TROPOMI; (e) LDN (2020) observed by TROPOMI; (f) LND-BAU changes
observed by TROPOMI. The linear best fit lines show the log–log relationship between VCDtrop NO2 (Y ) and population density (X) given by
equation y = β ·x+c, where y = log(Y ), x = log(X) and c = log(C). Therefore, the equation can be written as log(Y )= β ·log(X)+log(C)
or Y = C ·Xβ , where β is the slope of the line.

Figure 10. Temporal evolution of estimated change (7 d rolling mean) of satellite-observed VCDtrop NO2 and surface-measured NO2 for the
period 1 March–31 May 2020 from the baseline.

dia. Also, the changes observed from space and at the sur-
face have been inter-compared, and the correlation with the
population density has been studied.

Overall, a significant reduction in NO2 levels of up to
∼ 70 % was observed over India during the lockdown com-
pared to the same period during BAU. The usual prominent
NO2 hotspots observed by OMI and TROPOMI over urban

agglomerations during BAU were barely noticeable during
the lockdown. However, despite the reduction in electric-
ity production, the coal-based thermal power plants contin-
ued to be major NO2 hotspots during the lockdown. Some
of the largest reductions in NO2 were observed to be over
the urban areas of the IGP region. The reduction observed
for urban agglomerations was over 150× 1013 molec. cm−2
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(∼ 30 %) and even more for megacities showing a reduc-
tion of around 250× 1013 molec. cm−2 (50 %). The reduc-
tion observed over the urban areas was linked with reduced
traffic emissions due to travel restrictions for COVID-19
containment. The decrease was also observed over rural re-
gions. Average declines of NO2 in the ranges of 14 %–
30 %, 8 %–28 %, and 10 %–24 % were observed by OMI,
and 22 %–27 %, 6 %–18 %, and 3 %–21 % were observed by
TROPOMI over the urban, cropland, and forestland, respec-
tively, in different regions of India. In contrast, an average
enhancement over north-east India was observed due to pos-
itive fire anomalies during the lockdown. Although we have
considered the grids with zero fire anomaly during the lock-
down, the fire emissions can still enhance NO2 levels over
grids with no fire activity because of horizontal transport.

The observed changes in VCDtrop NO2 were found to be
spatially positively correlated with surface NO2 concentra-
tions, indicating that the lockdown NO2 changes appear to
be present in both measurement types. The TROPOMI NO2
showed a better correlation with surface NO2 and was more
sensitive to the changes than the OMI because of the finer
resolution. Therefore, TROPOMI can provide a better esti-
mate of NO2 associated with fine-scale heterogeneous emis-
sions. Also, VCDtrop NO2 was found to exhibit a good cor-
relation with the population density, suggesting a strong de-
pendence on the anthropogenic emissions. The changes ob-
served in the VCDtrop NO2 during the lockdown were neg-
atively correlated (i.e. reduction was positively correlated),
with the population density suggesting a larger reduction for
the densely populated cities. However, the influence of local
emissions can be different in different cities.

The analysis presented in this work shows a significant
change in NO2 levels across India. The observed reductions
can be linked with the control measures taken to prevent the
spread of the COVID-19 that restricted people’s movement,
resulting in a significant reduction in anthropogenic emis-
sions. As an important message to policymakers, this study
indicates the level of decrease in NO2 that is possible if dra-
matic reductions in key emission sectors such as road traffic
were incorporated into air quality management strategies.

Data availability. OMI data are available at the NASA Goddard
Earth Sciences Data and Information Services Center (GESDISC)
(https://disc.gsfc.nasa.gov/datasets/OMNO2d_003/summary, GES-
DISC, 2021). TROPOMI data are obtained from (http://www.
temis.nl/airpollution/no2.php, TEMIS, 2020). Surface measured
NO2 data across India are available at CPCB site (https:
//app.cpcbccr.com/ccr/, CPCB, 2020). VIIRS fire count data
are available at the FIRMS web portal (https://firms.modaps.
eosdis.nasa.gov/, FIRMS, 2020). India Population data used
in this study are available at the https://www.worldpop.org/
(https://doi.org/10.5258/SOTON/WP00532, WorldPop., 2017). The
LULC data for India are available at the Bhuvan, (https://bhuvan.
nrsc.gov.in, Bhuvan, 2020) Indian Geo-Platform of Indian Space
Research Organisation. ERA5 meteorology data are available at

CDC (https://cds.climate.copernicus.eu/cdsapp, CDC, 2021). The
mobility data are available on Google platform (https://www.
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