GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union (AGU)  (29)
  • Sachse, G. W.  (29)
Material
Publisher
  • American Geophysical Union (AGU)  (29)
Language
  • 1
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 108, No. D21 ( 2003-11-16)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2003
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 21, No. 23 ( 1994-11-15), p. 2583-2586
    Abstract: The meridional distribution of NO x in the lower stratosphere and upper troposphere is inferred from 10 flights of the NASA DC‐8 in the northern winter of 1992, along with like distributions of NO y , NO x /NO y , CO, and C 2 Cl 4 . In the lowest few km of the stratosphere there is little vertical gradient in NO x over the range of latitudes measured (40°–90°N). There is a substantial latitudinal gradient, with 50 pptv above the pole and 120 pptv near 40°N. In the uppermost few km of the troposphere, background values range from 30 pptv over the pole to 90 pptv near 40°N. On two occasions higher values, up to 140 pptv in the mean, were seen 2–3 km below the tropopause in association with frontal systems. The meridional distributions of CO and C 2 Cl 4 show the same feature, suggesting that the source of the elevated NO x is near the earth's surface.
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1994
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 105, No. D3 ( 2000-02-16), p. 3785-3793
    Abstract: Mixing ratios of nonmethane hydrocarbons (NMHCs) were not enhanced in whole air samples collected within the North Atlantic Flight Corridor (NAFC) during the fall of 1997. The investigation was conducted aboard NASA's DC‐8 research aircraft, as part of the Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX). NMHC enhancements were not detected within the general organized tracking system of the NAFC, nor during two tail chases of the DC‐8's own exhaust. Because positive evidence of aircraft emissions was demonstrated by enhancements in both nitrogen oxides and condensation nuclei during SONEX, the NMHC results suggest that the commercial air traffic fleet operating in the North Atlantic region does not contribute at all or contributes negligibly to NMHCs in the NAFC.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2000
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 101, No. D19 ( 1996-10-30), p. 24165-24186
    Abstract: This paper evaluates the potential sources of the enhanced levels of NO that were observed throughout the upper troposphere over the equatorial and tropical South Atlantic. During September/October 1992 NO x (NO + NO 2 ) mixing ratios in the 8‐ to 13‐km region averaged 150 parts per trillion by volume (pptv) and were greatly affected by what appeared as spatially large “plumes” (100 to 1000 km) with NO enhancements of over 800 parts per trillion by volume. Other trace gases were also enhanced within these plumes (e.g., CO, CO 2 , CH 4 , CH 3 Cl, C 2 H 2 , C 2 H 6 , C 3 H 8 , and PAN). However, for these tracers of surface emissions, inconsistent patterns of enhancement were found with respect to one another and to NO. We analyzed these plumes for indications of coherent relationships between the enhanced levels of NO and the enhanced levels of biogenic and combustion‐related tracers. This analysis indicated that the tracer relationships were primarily produced by their common injection via deep convection into the upper troposphere. A corollary analysis using a combustion tracer reference frame in combination with meteorological analysis indicates a longer than expected lifetime of NO x in the upper troposphere. This analysis also suggests that an efficient mechanism may exist in the upper troposphere for recycling HNO 3 back into NO x with a rate comparable to that predicted for the HNO 3 formation. During the Transport and Atmospheric Chemistry Near the Equator Atlantic study period this in‐situ formation of NO x is estimated to provide the equivalent of approximately 0.7 TgN/yr of NO x within the South Atlantic basin's upper troposphere. This magnitude of local in situ source is estimated to be comparable to the combined inputs from lightning and biomass burning, which are both injected via deep convection. Our analysis also suggests that lightning can contribute as much as half of the external input of NO x into this region of the upper troposphere with biomass burning possibly representing the remainder.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1996
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 102, No. D23 ( 1997-12-20), p. 28255-28274
    Abstract: We present here the chemical composition of outflow from the Asian continent to the atmosphere over the western Pacific basin during the Pacific Exploratory Mission‐West (PEM‐West B) in February–March 1994. Comprehensive measurements of important tropospheric trace gases and aerosol particulate matter were performed from the NASA DC‐8 airborne laboratory. Backward 5 day isentropic trajectories were used to partition the outflow from two major source regions: continental north ( 〉 20°N) and continental south ( 〈 20°N). Air parcels that had not passed over continental areas for the previous 5 days were classified as originating from an aged marine source. The trajectories and the chemistry together indicated that there was extensive rapid outflow of air parcels at altitudes below 5 km, while aged marine air was rarely encountered and only at 〈 20°N latitude. The outflow at low altitudes had enhancements in common industrial solvent vapors such as C 2 Cl 4 , CH 3 CCl 3 , and C 6 H 6 , intermixed with the combustion emission products C 2 H 2 , C 2 H 6 , CO, and NO. The mixing ratios of all species were up to tenfold greater in outflow from the continental north compared to the continental south source region, with 210 Pb concentrations reaching 38 fCi (10 −15 curies) per standard cubic meter. In the upper troposphere we again observed significant enhancements in combustion‐derived species in the 8–10 km altitude range, but water‐soluble trace gases and aerosol species were depleted. These observations suggest that ground level emissions were lofted to the upper troposphere by wet convective systems which stripped water‐soluble components from these air parcels. There were good correlations between C 2 H 2 and CO and C 2 H 6 ( r 2 =0.70–0.97) in these air parcels and much weaker ones between C 2 H 2 and H 2 O 2 or CH 3 OOH ( r 2 ≈0.50). These correlations were the strongest in the continental north outflow where combustion inputs appeared to be recent (1–2 days old). Ozone and PAN showed general correlation in these same air parcels but not with the combustion products. It thus appears that several source inputs were intermixed in these upper tropospheric air masses, with possible contributions from European or Middle Eastern source regions. In aged marine air mixing ratios of O 3 (≈20 parts per billion by volume) and PAN (≤10 parts per trillion by volume) were nearly identical at 〈 2 km and 10–12 km altitudes due to extensive convective uplifting of marine boundary layer air over the equatorial Pacific even in wintertime. Comparison of the Pacific Exploratory Mission‐West A and PEM‐West B data sets shows significantly larger mixing ratios of SO 2 and H 2 O 2 during PEM‐West A. Emissions from eruption of Mount Pinatubo are a likely cause for the former, while suppressed photochemical activity in winter was probably responsible for the latter. This comparison also highlighted the twofold enhancement in C 2 H 2 , C 2 H 6 , and C 3 H 8 in the continental north outflow during PEM‐West B. Although this could be due to reduced OH oxidation rates of these species in wintertime, we argue that increased source emissions are primarily responsible.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1997
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 101, No. D19 ( 1996-10-30), p. 24187-24202
    Abstract: The chemical characteristics of air parcels over the tropical South Atlantic during September – October 1992 are summarized by analysis of aged marine and continental outflow classifications. Positive correlations between CO and CH 3 Cl and minimal enhancements of C 2 Cl 4 and various chlorofluorocarbon (CFC) species in air parcels recently advected over the South Atlantic basin strongly suggest an impact on tropospheric chemistry from biomass burning on adjacent continental areas of Brazil and Africa. Comparison of the composition of aged Pacific air with aged marine air over the South Atlantic basin from 0.3 to 12.5 km altitude indicates potential accumulation of long‐lived species during the local dry season. This may amount to enhancements of up to two‐fold for C 2 H 6 , 30% for CO, and 10% for CH 3 Cl. Nitric oxide and NO x were significantly enhanced (up to ∼1 part per billion by volume (ppbv)) above 10 km altitude and poorly correlated with CO and CH 3 Cl. In addition, median mixing ratios of NO and NO x were essentially identical in aged marine and continental outflow air masses. It appears that in addition to biomass burning, lightning or recycled reactive nitrogen may be an important source of NO x to the upper troposphere. Methane exhibited a monotonic increase with altitude from ∼1690 to 1720 ppbv in both aged marine and continental outflow air masses. The largest mixing ratios in the upper troposphere were often anticorrelated with CO, CH 3 Cl, and CO 2 , suggesting CH 4 contributions from natural sources. We also argue, based on CH 4 /CO ratios and relationships with various hydrocarbon and CFC species, that inputs from biomass burning and the northern hemisphere are unlikely to be the dominant sources of CO, CH 4 , and C 2 H 6 in aged marine air. Emissions from urban areas would seem to be necessary to account for the distribution of at least CH 4 and C 2 H 6 . Over the African and South American continents an efficient mechanism of convective vertical transport coupled with large‐scale circulations conveys biomass burning, urban, and natural emissions to the upper troposphere over the South Atlantic basin. Slow subsidence over the eastern South Atlantic basin may play an important role in establishing and maintaining the rather uniform vertical distribution of long‐lived species over this region. The common occurrence of values greater than 1 for the ratio CH 3 OOH/H 2 O 2 in the upper troposphere suggests that precipitation scavenging effectively removed highly water soluble gases (H 2 O 2 , HNO 3 , HCOOH, and CH 3 COOH) and aerosols during vertical convective transport over the continents. However, horizontal injection of biomass burning products over the South Atlantic, particularly water soluble species and aerosol particles, was frequent below 6 km altitude.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1996
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 116, No. D14 ( 2011-07-16)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2011
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 108, No. D21 ( 2003-11-16)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2003
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 108, No. D21 ( 2003-11-16)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2003
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 101, No. D1 ( 1996-01-20), p. 1691-1712
    Abstract: Remote and in situ measurements of gases and aerosols were made with airborne instrumentation to investigate the sources and sinks of tropospheric gases and aerosols over the western Pacific during the NASA Global Tropospheric Experiment (GTE)/Pacific Exploratory Mission‐West A (PEM‐West A) conducted in September–October 1991. This paper discusses the general characteristics of the air masses encountered during this experiment using an airborne lidar system for measurements of the large‐scale variations in ozone (O 3 ) and aerosol distributions across the troposphere and airborne in situ instrumentation for comprehensive measurements of air mass composition. In low latitudes of the western Pacific the airflow was generally from the east, and under these conditions the air was observed to have low aerosol loading and low ozone levels throughout the troposphere. Ozone was found to be below 10 parts per billion volume (ppbv) near the surface to 40–50 ppbv in the middle to upper troposphere. In the middle and high latitudes the airflow was mostly westerly, and the background O 3 was generally less than 55 ppbv. On 60% of the PEM‐West A flights, O 3 was observed to exceed these levels in regions that were determined to be associated with stratospheric intrusions. In convective outflows from typhoons, near‐surface air with low ozone ( 〈 25 ppbv) was transported into the upper troposphere ( 〉 10 km). Several cases of continental plumes from Asia were observed over the Pacific during westerly flow conditions. These plumes were found in the lower troposphere with ozone levels in the 60–80 ppbv range and enhanced aerosol scattering. At low latitudes over the central Pacific the troposphere primarily contained air with background or low ozone levels; however, stratospherically influenced air with enhanced ozone (40–60 ppbv) was observed several times in the lower troposphere. The frequency of observation of the air masses and their average chemical composition are also discussed in this paper.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1996
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...