GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The Royal Society ; 1997
    In:  Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences Vol. 352, No. 1350 ( 1997-02-28), p. 159-169
    In: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, The Royal Society, Vol. 352, No. 1350 ( 1997-02-28), p. 159-169
    Abstract: The principal volatile sulphur species found in seawater are dimethyl sulphide (DMS), carbonyl sulphide (COS) and carbon disulphide (CS 2 . Of these, DMS is the most abundant and widespread in its distribution. The predominant oceanic source of DMS is dimethylsulphonioproprionate (DMSP), a compatible solute synthesized by phytoplankton for osmoregulation and/or cryoprotection. Not all species have the same ability to form DMSP; for example, diatoms generally produce little, whereas prymnesiophytes and some dinoflagellates make significantly larger amounts. Much of the release of DMSP and DMS to the water occurs on death or through predation of the plankton. Our recent field data strongly suggest that oxidation of DMS to dimethyl sulphoxide (DMSO) is an important process in the water column, and it is clear that considerable internal cycling in the DMSP/DMS/DMSO system occurs in the euphotic zone. A fraction of the DMS crosses the sea surface and enters the atmosphere where it is oxidized by radicals such OH and NO 3 to form products such as methanesulphonate (MSA), DMSO and non-sea salt sulphate (NSSS) particles. These particles are the main source of cloud condensation nuclei (CCN) over oceanic areas remote from land.
    Type of Medium: Online Resource
    ISSN: 0962-8436 , 1471-2970
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 1997
    detail.hit.zdb_id: 1462620-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2000
    In:  Geophysical Research Letters Vol. 27, No. 14 ( 2000-07-15), p. 2117-2120
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 27, No. 14 ( 2000-07-15), p. 2117-2120
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2000
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Global Biogeochemical Cycles, American Geophysical Union (AGU), Vol. 14, No. 1 ( 2000-03), p. 373-387
    Abstract: Measurements of air‐sea gas exchange rates are reported from two deliberate tracer experiments in the southern North Sea during February 1992 and 1993. A conservative tracer, spores of the bacterium Bacillus globigii var. Niger , was used for the first time in an in situ air‐sea gas exchange experiment. This nonvolatile tracer is used to correct for dispersive dilution of the volatile tracers and allows three estimations of the transfer velocity for the same time period. The first estimation of the power dependence of gas transfer on molecular diffusivity in the marine environment is reported. This allows the impact of bubbles on estimates of the transfer velocity derived from changes in the helium/sulphur hexafluoride ratio to be assessed. Data from earlier dual tracer experiments are reinterpreted, and findings suggest that results from all dual tracer experiments are mutually consistent. The complete data set is used to test published parameterizations of gas transfer with wind speed. A gas ex‐ change relationship that shows a dependence on wind speed intermediate between those of Liss and Merlivat [1986] and Wanninkhof [1992] is found to be optimal. The dual tracer data are shown to be reasonably consistent with global estimates of gas exchange based on the uptake of natural and bomb‐derived radiocarbon. The degree of scatter in the data when plotted against wind speed suggests that parameters not scaling with wind speed are also influencing gas exchange rates.
    Type of Medium: Online Resource
    ISSN: 0886-6236 , 1944-9224
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2000
    detail.hit.zdb_id: 2021601-4
    SSG: 12
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2006
    In:  Limnology and Oceanography Vol. 51, No. 6 ( 2006-11), p. 2849-2854
    In: Limnology and Oceanography, Wiley, Vol. 51, No. 6 ( 2006-11), p. 2849-2854
    Type of Medium: Online Resource
    ISSN: 0024-3590
    Language: English
    Publisher: Wiley
    Publication Date: 2006
    detail.hit.zdb_id: 2033191-5
    detail.hit.zdb_id: 412737-7
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Copernicus GmbH ; 2021
    In:  Atmospheric Chemistry and Physics Vol. 21, No. 13 ( 2021-07-06), p. 10111-10132
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 13 ( 2021-07-06), p. 10111-10132
    Abstract: Abstract. Volatile organic compounds (VOCs) are ubiquitous in the atmosphere and are important for atmospheric chemistry. Large uncertainties remain in the role of the ocean in the atmospheric VOC budget because of poorly constrained marine sources and sinks. There are very few direct measurements of air–sea VOC fluxes near the coast, where natural marine emissions could influence coastal air quality (i.e. ozone, aerosols) and terrestrial gaseous emissions could be taken up by the coastal seas. To address this, we present air–sea flux measurements of acetone, acetaldehyde and dimethylsulfide (DMS) at the coastal Penlee Point Atmospheric Observatory (PPAO) in the south-west UK during the spring (April–May 2018). Fluxes of these gases were measured simultaneously by eddy covariance (EC) using a proton-transfer-reaction quadrupole mass spectrometer. Comparisons are made between two wind sectors representative of different air–water exchange regimes: the open-water sector facing the North Atlantic Ocean and the terrestrially influenced Plymouth Sound fed by two estuaries. Mean EC (± 1 standard error) fluxes of acetone, acetaldehyde and DMS from the open-water wind sector were −8.0 ± 0.8, −1.6 ± 1.4 and 4.7 ± 0.6 µmol m−2 d−1 respectively (“−” sign indicates net air-to-sea deposition). These measurements are generally comparable (same order of magnitude) to previous measurements in the eastern North Atlantic Ocean at the same latitude. In comparison, the Plymouth Sound wind sector showed respective fluxes of −12.9 ± 1.4, −4.5 ± 1.7 and 1.8 ± 0.8 µmol m−2 d−1. The greater deposition fluxes of acetone and acetaldehyde within the Plymouth Sound were likely to a large degree driven by higher atmospheric concentrations from the terrestrial wind sector. The reduced DMS emission from the Plymouth Sound was caused by a combination of lower wind speed and likely lower dissolved concentrations as a result of the estuarine influence (i.e. dilution). In addition, we measured the near-surface seawater concentrations of acetone, acetaldehyde, DMS and isoprene from a marine station 6 km offshore. Comparisons are made between EC fluxes from the open-water and bulk air–sea VOC fluxes calculated using air and water concentrations with a two-layer (TL) model of gas transfer. The calculated TL fluxes agree with the EC measurements with respect to the directions and magnitudes of fluxes, implying that any recently proposed surface emissions of acetone and acetaldehyde would be within the propagated uncertainty of 2.6 µmol m−2 d−1. The computed transfer velocities of DMS, acetone and acetaldehyde from the EC fluxes and air and water concentrations are largely consistent with previous transfer velocity estimates from the open ocean. This suggests that wind, rather than bottom-driven turbulence and current velocity, is the main driver for gas exchange within the open-water sector at PPAO (depth of ∼ 20 m).
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 1996
    In:  Nature Vol. 383, No. 6600 ( 1996-10), p. 513-517
    In: Nature, Springer Science and Business Media LLC, Vol. 383, No. 6600 ( 1996-10), p. 513-517
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 1996
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Analytica Chimica Acta, Elsevier BV, Vol. 706, No. 1 ( 2011-11), p. 128-134
    Type of Medium: Online Resource
    ISSN: 0003-2670
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2011
    detail.hit.zdb_id: 52-8
    detail.hit.zdb_id: 1483436-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2010
    In:  Proceedings of the National Academy of Sciences Vol. 107, No. 2 ( 2010-01-12), p. 760-765
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 2 ( 2010-01-12), p. 760-765
    Abstract: The oceanic uptake of man-made CO 2 emissions is resulting in a measureable decrease in the pH of the surface oceans, a process which is predicted to have severe consequences for marine biological and biogeochemical processes [Caldeira K, Wickett ME (2003) Nature 425:365; The Royal Society (2005) Policy Document 12/05 (Royal Society, London)]. Here, we describe results showing how a doubling of current atmospheric CO 2 affects the production of a suite of atmospherically important marine trace gases. Two CO 2 treatments were used during a mesocosm CO 2 perturbation experiment in a Norwegian fjord (present day: ∼380 ppmv and year 2100: ∼750 ppmv), and phytoplankton blooms were stimulated by the addition of nutrients. Seawater trace gas concentrations were monitored over the growth and decline of the blooms, revealing that concentrations of methyl iodide and dimethylsulfide were significantly reduced under high CO 2. Additionally, large reductions in concentrations of other iodocarbons were observed. The response of bromocarbons to high CO 2 was less clear cut. Further research is now required to understand how ocean acidification might impact on global marine trace gas fluxes and how these impacts might feed through to changes in the earth's future climate and atmospheric chemistry.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Environmental Chemistry, CSIRO Publishing, Vol. 9, No. 4 ( 2012), p. 399-
    Abstract: Environmental contextAs atmospheric CO2 levels rise due to human activities, more of the gas dissolves in the oceans, increasing their acidity. The effect of these seawater changes on marine organisms is largely unknown. We examine the consequences of higher CO2 levels on the production by plankton of dimethyl sulfide, a climatically active gas. We find that higher CO2 levels leads to lower concentrations of dimethyl sulfide in the seawater, which has potentially important implications for the future climate. AbstractThe oceans have absorbed approximately half of the CO2 produced by human activities and it is inevitable that surface seawaters will become increasingly acidified. The effect of lower pH on marine organisms and ocean–atmosphere exchanges is largely unknown but organisms with CaCO3 structural components are likely to be particularly affected. Because calcifying phytoplankton are significant producers of dimethyl sulfide (DMS), it is vital to understand how lower seawater pH may affect DMS production and emission to the atmosphere. Here we show, by mesocosm (Raunefjorden, Norway, April–May 2003) and in vitro studies, that the net production of DMS and its cellular precursor dimethylsulfoniopropionate (DMSP) is approximately halved in microbial communities subjected to doubled CO2 levels. Our findings provide evidence that the amount of DMS entering the atmosphere could decrease in the future. Because atmospheric oxidation of DMS can lead to climate cooling by increasing cloud albedo, a consequence of reduced DMS emissions from a lower pH ocean would be an enhancement in global warming.
    Type of Medium: Online Resource
    ISSN: 1448-2517
    Language: English
    Publisher: CSIRO Publishing
    Publication Date: 2012
    detail.hit.zdb_id: 2150372-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2013
    In:  Proceedings of the National Academy of Sciences Vol. 110, No. 50 ( 2013-12-10), p. 20034-20039
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 50 ( 2013-12-10), p. 20034-20039
    Abstract: In the troposphere, methanol (CH 3 OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air–sea methanol transfer along a ∼10,000-km north–south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air–sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface—an important term for improving air–sea gas exchange models.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...