GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lu, Xinyi  (2)
  • van der Veen, Carina  (2)
Material
Publisher
Language
Years
  • 1
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 13 ( 2021-07-14), p. 10527-10555
    Abstract: Abstract. In regions where there are multiple sources of methane (CH4) in close proximity, it can be difficult to apportion the CH4 measured in the atmosphere to the appropriate sources. In the Surat Basin, Queensland, Australia, coal seam gas (CSG) developments are surrounded by cattle feedlots, grazing cattle, piggeries, coal mines, urban centres and natural sources of CH4. The characterization of carbon (δ13C) and hydrogen (δD) stable isotopic composition of CH4 can help distinguish between specific emitters of CH4. However, in Australia there is a paucity of data on the various isotopic signatures of the different source types. This research examines whether dual isotopic signatures of CH4 can be used to distinguish between sources of CH4 in the Surat Basin. We also highlight the benefits of sampling at nighttime. During two campaigns in 2018 and 2019, a mobile CH4 monitoring system was used to detect CH4 plumes. Sixteen plumes immediately downwind from known CH4 sources (or individual facilities) were sampled and analysed for their CH4 mole fraction and δ13CCH4 and δDCH4 signatures. The isotopic signatures of the CH4 sources were determined using the Keeling plot method. These new source signatures were then compared to values documented in reports and peer-reviewed journal articles. In the Surat Basin, CSG sources have δ13CCH4 signatures between −55.6 ‰ and −50.9 ‰ and δDCH4 signatures between −207.1 ‰ and −193.8 ‰. Emissions from an open-cut coal mine have δ13CCH4 and δDCH4 signatures of -60.0±0.6 ‰ and -209.7±1.8 ‰ respectively. Emissions from two ground seeps (abandoned coal exploration wells) have δ13CCH4 signatures of -59.9±0.3 ‰ and -60.5±0.2 ‰ and δDCH4 signatures of -185.0±3.1 ‰ and -190.2±1.4 ‰. A river seep had a δ13CCH4 signature of -61.2±1.4 ‰ and a δDCH4 signature of -225.1±2.9 ‰. Three dominant agricultural sources were analysed. The δ13CCH4 and δDCH4 signatures of a cattle feedlot are -62.9±1.3 ‰ and -310.5±4.6 ‰ respectively, grazing (pasture) cattle have δ13CCH4 and δDCH4 signatures of -59.7±1.0 ‰ and -290.5±3.1 ‰ respectively, and a piggery sampled had δ13CCH4 and δDCH4 signatures of -47.6±0.2 ‰ and -300.1±2.6 ‰ respectively, which reflects emissions from animal waste. An export abattoir (meat works and processing) had δ13CCH4 and δDCH4 signatures of -44.5±0.2 ‰ and -314.6±1.8 ‰ respectively. A plume from a wastewater treatment plant had δ13CCH4 and δDCH4 signatures of -47.6±0.2 ‰ and -177.3±2.3 ‰ respectively. In the Surat Basin, source attribution is possible when both δ13CCH4 and δDCH4 are measured for the key categories of CSG, cattle, waste from feedlots and piggeries, and water treatment plants. Under most field situations using δ13CCH4 alone will not enable clear source attribution. It is common in the Surat Basin for CSG and feedlot facilities to be co-located. Measurement of both δ13CCH4 and δDCH4 will assist in source apportionment where the plumes from two such sources are mixed.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 23 ( 2022-12-12), p. 15527-15558
    Abstract: Abstract. In-flight measurements of atmospheric methane (CH4(a)) and mass balance flux quantification studies can assist with verification and improvement in the UNFCCC National Inventory reported CH4 emissions. In the Surat Basin gas fields, Queensland, Australia, coal seam gas (CSG) production and cattle farming are two of the major sources of CH4 emissions into the atmosphere. Because of the rapid mixing of adjacent plumes within the convective boundary layer, spatially attributing CH4(a) mole fraction readings to one or more emission sources is difficult. The primary aims of this study were to use the CH4(a) isotopic composition (δ13CCH4(a)) of in-flight atmospheric air (IFAA) samples to assess where the bottom–up (BU) inventory developed specifically for the region was well characterised and to identify gaps in the BU inventory (missing sources or over- and underestimated source categories). Secondary aims were to investigate whether IFAA samples collected downwind of predominantly similar inventory sources were useable for characterising the isotopic signature of CH4 sources (δ13CCH4(s)) and to identify mitigation opportunities. IFAA samples were collected between 100–350 m above ground level (m a.g.l.) over a 2-week period in September 2018. For each IFAA sample the 2 h back-trajectory footprint area was determined using the NOAA HYSPLIT atmospheric trajectory modelling application. IFAA samples were gathered into sets, where the 2 h upwind BU inventory had 〉 50 % attributable to a single predominant CH4 source (CSG, grazing cattle, or cattle feedlots). Keeling models were globally fitted to these sets using multiple regression with shared parameters (background-air CH4(b) and δ13CCH4(b)). For IFAA samples collected from 250–350 m a.g.l. altitude, the best-fit δ13CCH4(s) signatures compare well with the ground observation: CSG δ13CCH4(s) of −55.4 ‰ (confidence interval (CI) 95 % ± 13.7 ‰) versus δ13CCH4(s) of −56.7 ‰ to −45.6 ‰; grazing cattle δ13CCH4(s) of −60.5 ‰ (CI 95 % ± 15.6 ‰) versus −61.7 ‰ to −57.5 ‰. For cattle feedlots, the derived δ13CCH4(s) (−69.6 ‰, CI 95 % ± 22.6 ‰), was isotopically lighter than the ground-based study (δ13CCH4(s) from −65.2 ‰ to −60.3 ‰) but within agreement given the large uncertainty for this source. For IFAA samples collected between 100–200 m a.g.l. the δ13CCH4(s) signature for the CSG set (−65.4 ‰, CI 95 % ± 13.3 ‰) was isotopically lighter than expected, suggesting a BU inventory knowledge gap or the need to extend the population statistics for CSG δ13CCH4(s) signatures. For the 100–200 m a.g.l. set collected over grazing cattle districts the δ13CCH4(s) signature (−53.8 ‰, CI 95 % ± 17.4 ‰) was heavier than expected from the BU inventory. An isotopically light set had a low δ13CCH4(s) signature of −80.2 ‰ (CI 95 % ± 4.7 ‰). A CH4 source with this low δ13CCH4(s) signature has not been incorporated into existing BU inventories for the region. Possible sources include termites and CSG brine ponds. If the excess emissions are from the brine ponds, they can potentially be mitigated. It is concluded that in-flight atmospheric δ13CCH4(a) measurements used in conjunction with endmember mixing modelling of CH4 sources are powerful tools for BU inventory verification.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...