GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
  • Hofmann, Wolf-Karsten  (2)
Material
Publisher
  • American Association for Cancer Research (AACR)  (2)
Language
Years
Subjects(RVK)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 8_Supplement ( 2013-04-15), p. 4602-4602
    Abstract: Recent genetic studies have revealed a number of novel gene mutations in myeloid malignancies, unmasking an unexpected role of deregulated histone modification and DNA methylation in myeloid neoplasms. However, our knowledge about the spectrum of gene mutations in myeloid neoplasms is still incomplete. So, we analyzed 50 paired tumor-normal samples of myeloid neoplasms using whole exome sequencing, among which we identified recurrent mutations involving STAG2, a core cohesin component, and two other cohesin components, including STAG1 and PDS5B. Cohesin is a multimeric protein complex which is composed of four core subunits (SMC1, SMC3, RAD21 and STAG proteins), and is engaged in cohesion of sister chromatids, DNA repair and transcriptional regulation. To extend the findings in the whole-exome analysis, an additional 534 primary samples of various myeloid neoplasms was examined for mutations and deletions in a total of 9 components of the cohesin complexes, using high-throughput sequencing and SNP arrays. In total, mutations/deletions were found in a variety of myeloid neoplasms, including AML (22/131), CMML (15/86), MDS (26/205), in a mutually exclusive manner. Cohesin mutations frequently coexisted with other common mutations in myeloid neoplasms, significantly associated with spliceosome mutations. Deep sequencing of these mutant alleles revealed that majority of the cohesin mutations existed in the major tumor populations, indicating their early origin during leukemogenesis. Next, we examined several myeloid leukemia cell lines with or without cohesin mutations for expression of each cohesin component and their chromatin-bound fractions. Interestingly, the chromatin-bound fraction of several components of cohesin was significantly reduced in cell lines having mutated or defective cohesin components, suggesting substantial loss of cohesin-bound sites on chromatin. Finally, we introduced the wild-type RAD21 allele into RAD21-mutated cell lines (Kasumi-1), which effectively suppressed the proliferation of Kasumi-1, supporting a leukemogenic role of compromised cohesin functions. Less frequent mutations of cohesin components have been described in other cancers, where impaired cohesion and consequent aneuploidy were implicated in oncogenic action. However, about half of cohesin-mutated cases in our cohort had completely normal karyotypes, suggesting that cohesin-mutated cells were not clonally selected because of aneuploidy. Of note, the number of mutations determined by our whole exome analysis was significantly higher in cohesin-mutated cases compared to non-mutated cases. Since cohesin participates in post-replicative DNA repair, this may suggest that compromised cohesin function could induce DNA hypermutability and contribute to leukemogenesis. In conclusion, our findings highlight a possible role of compromised cohesin functions in myeloid leukemogenesis. Citation Format: Ayana Kon, Lee-Yung Shih, Masashi Minamino, Masashi Sanada, Yuichi Shiraishi, Yasunobu Nagata, Kenichi Yoshida, Yusuke Okuno, Masashige Bando, Shunpei Ishikawa, Aiko Sato-Otsubo, Genta Nagae, Aiko Nishimoto, Claudia Haferlach, Daniel Nowak, Yusuke Sato, Tamara Alpermann, Teppei Shimamura, Hiroko Tanaka, Kenichi Chiba, Ryo Yamamoto, Tomoyuki Yamaguchi, Makoto Otsu, Naoshi Obara, Mamiko Sakata-Yanagimoto, Tsuyoshi Nakamaki, Ken Ishiyama, Florian Nolte, Wolf-Karsten Hofmann, Shuichi Miyawaki, Shigeru Chiba, Hiraku Mori, Hiromitsu Nakauchi, H. Phillip Koeffler, Hiroyuki Aburatani, Torsten Haferlach, Katsuhiko Shirahige, Satoru Miyano, Seishi Ogawa. Recurrent pathway mutations of multiple components of cohesin complex in myeloid neoplasms. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 4602. doi:10.1158/1538-7445.AM2013-4602
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 8_Supplement ( 2012-04-15), p. 5119-5119
    Abstract: MDS are a group of myeloid neoplasms characterized by deregulated blood cell production and a high propensity to AML. Although a number of gene alterations have been implicated in the pathogenesis of MDS, they do not fully explain the pathogenesis of MDS. So, in order to clarify a comprehensive registry of gene mutations in MDS, we performed whole-exome sequencing of 29 cases with MDS and related myeloid neoplasm. A total of 268 somatic mutations or 9.2 mutations per sample were identified. Among these 9 genes were mutated in more than 2 cases, which not only included a spectrum of known gene targets in MDS, but also affected previously unknown genes that are commonly involved in RNA splicing pathway, including U2AF35, SRSF2 and ZRSR2. Together with additional three (SF3A1, SF3B1 and PRPF40B) found in single cases, 16 (55.2%) of the 29 discovery cases carried a mutation affecting the component of the splicing machinery. To confirm the observation, we examined 9 spliceosome genes for mutations in a large set of myeloid neoplasms. In total, 219 mutations were identified in 209 out of the 582 samples of myeloid neoplasms. RNA splicing pathway mutations were highly specific to myelodysplasia, including 19 of 23 (83%) cases with RARS, 43 of 50 (86%) RCMD-RS, 68 of 155 (44%) other MDS, 48 of 88 (55%) CMML, and 16 of 62 (26%) secondary AML with MDS features with a string preference of SF3B1 mutations to RARS and RCMD-RS and of SRSF2 to CMML, while they were rare in cases with de novo AML and MPN. Significantly, these mutations occurred in an almost completely mutually exclusive manner among mutated cases, suggesting the importance of deregulated RNA splicing in the pathogenesis of MDS. RNA splicing plays critical roles in differentiation, development, and disease and is a major source for protein diversity in higher eukaryotes. Splicing pathway mutations in myelodysplasia commonly affected those components of the splicing complex that are engaged in the 3′ splice site recognition, strongly indicating production of unspliced or aberrantly spliced RNA species are incriminated for the pathogenesis of MDS. So, to clarify the effect of these splicing mutations on RNA splicing, we expressed the wild-type and the mutant U2AF35 or SRSF2 in HeLa cells and performed whole transcriptome analysis in these cells. The results of exon array showed that the wild-type U2AF35 promoted RNA splicing correctly, whereas the mutant U2AF35 inhibited this processes and rendered intronic sequences to remain unspliced. RNA sequencing additionally showed that the number of reads that encompassed the exon/intron junctions was significantly increased in mutant U2AF35-transduced cells. This result means that mutant U2AF35 actually induced impaired 3′-splice site recognition during pre-mRNA processing. In conclusion, our study demonstrated that abnormal RNA splicing caused by mutations of multiple genes on RNA splicing pathway is a common feature of myelodysplasia. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 5119. doi:1538-7445.AM2012-5119
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...