GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Astronomy, Springer Science and Business Media LLC
    Abstract: Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe 3+ to Fe 2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (–OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss.
    Type of Medium: Online Resource
    ISSN: 2397-3366
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2879712-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 379, No. 6634 ( 2023-02-24)
    Abstract: Organic compounds in asteroids and comets contain information about the early history of the Solar System. They could also have delivered organic material to early Earth. The Hayabusa2 spacecraft visited the carbonaceous asteroid Ryugu and collected samples of its surface materials, which were brought to Earth in December 2020. RATIONALE We investigated the macromolecular organic matter in the Ryugu samples, measuring its elemental, isotopic, and functional group compositions along with its small-scale structures and morphologies. Analytical methods used included spectro-microscopies, electron microscopy, and isotopic microscopy. We examined intact Ryugu grains and insoluble carbonaceous residues isolated by acid treatment of the Ryugu samples. RESULTS Organic matter is abundant in the Ryugu grains, distributed as submicrometer-sized organic grains and as organic matter dispersed in matrix. The Ryugu organic matter consists of aromatic carbons, aliphatic carbons, ketones, and carboxyls. The functional group compositions are consistent with those of insoluble organic matter (IOM) from primitive carbonaceous CI (Ivuna-type) and CM (Mighei-type) chondritic meteorites. Those meteorites experienced aqueous alteration (reactions with liquid water) on their parent bodies, which implies that the Ryugu organic material was also modified by aqueous alteration on the asteroid parent body. The functional group distributions of the Ryugu organic matter vary on submicrometer scales in ways that relate to the morphologies: nanoparticulate and/or nanoglobular regions are aromatic-rich, whereas organic matter associated with Mg-rich phyllosilicate matrix and carbonates is IOM-like or occurs as diffuse carbon. The observed macromolecular diversity provides further evidence that the organics were modified by aqueous alteration on Ryugu’s parent body. The diffuse carbon is similar to clay-bound organic matter that occurs in CI chondrites and the ungrouped C2-type meteorite Tagish Lake. No graphite-like material was found, which indicates that the Ryugu organic matter was not subjected to heating events on the parent body. The bulk hydrogen and nitrogen isotopic ratios of the Ryugu grains are between the bulk values of CI chondrites and the IOM in CI chondrites. Some carbonaceous grains showed extreme deuterium (D) and/or nitrogen-15 ( 15 N) enrichments or depletions. These indicate an origin in the interstellar medium or presolar nebula. The bulk hydrogen isotopic ratios of insoluble carbonaceous residues from the Ryugu samples are lower than those in CI and CM chondrites. The range of D enrichments are consistent with the ranges of CI, CM, and Tagish Lake chondrites. The nitrogen isotopic ratios of the IOM from Ryugu samples were close to those in CI chondrites. CONCLUSION The organic matter in Ryugu probably consists of primordial materials that formed during (or before) the early stages of the Solar System’s formation, which were later modified by heterogeneous aqueous alteration on Ryugu’s parent body asteroid. Although the surface of Ryugu is exposed to solar wind, impacts, and heating by sunlight, the macromolecular organics in the surface grains of Ryugu are similar in their chemical, isotopic, and morphological compositions to those seen in primitive carbonaceous chondrites. The properties of Ryugu’s organic matter could explain the low albedo of the asteroid’s surface. Chemical evolution of macromolecular organic matter in samples of asteroid Ryugu. Organic matter formed in the interstellar medium or in the outer region of the protoplanetary disk that formed the Solar System. It was then incorporated into a planetesimal—Ryugu’s parent body—where it experienced varying degrees of reactions with liquid water. An impact ejected material from the parent body, which reassembled to form Ryugu. Samples were brought to Earth by Hayabusa2. CREDIT: HIROSHIMA UNIVERSITY, JAXA, UNIVERSITY OF TOKYO, KOCHI UNIVERSITY, RIKKYO UNIVERSITY, NAGOYA UNIVERSITY, CHIBA INSTITUTE OF TECHNOLOGY, MEIJI UNIVERSITY, UNIVERSITY OF AIZU, AIST
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Planetary and Space Science, Elsevier BV, Vol. 219 ( 2022-09), p. 105519-
    Type of Medium: Online Resource
    ISSN: 0032-0633
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 2012795-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature Astronomy, Springer Science and Business Media LLC, Vol. 6, No. 2 ( 2021-12-20), p. 214-220
    Abstract: C-type asteroids 1 are considered to be primitive small Solar System bodies enriched in water and organics, providing clues to the origin and evolution of the Solar System and the building blocks of life. C-type asteroid 162173 Ryugu has been characterized by remote sensing 2–7 and on-asteroid measurements 8,9 with Hayabusa2 (ref.  10 ). However, the ground truth provided by laboratory analysis of returned samples is invaluable to determine the fine properties of asteroids and other planetary bodies. We report preliminary results of analyses on returned samples from Ryugu of the particle size distribution, density and porosity, spectral properties and textural properties, and the results of a search for Ca–Al-rich inclusions (CAIs) and chondrules. The bulk sample mainly consists of rugged and smooth particles of millimetre to submillimetre size, confirming that the physical and chemical properties were not altered during the return from the asteroid. The power index of its size distribution is shallower than that of the surface boulder observed on Ryugu 11 , indicating differences in the returned Ryugu samples. The average of the estimated bulk densities of Ryugu sample particles is 1,282 ± 231 kg m −3 , which is lower than that of meteorites 12 , suggesting a high microporosity down to the millimetre scale, extending centimetre-scale estimates from thermal measurements 5,9 . The extremely dark optical to near-infrared reflectance and spectral profile with weak absorptions at 2.7 and 3.4 μm imply a carbonaceous composition with indigenous aqueous alteration, matching the global average of Ryugu 3,4 and confirming that the sample is representative of the asteroid. Together with the absence of submillimetre CAIs and chondrules, these features indicate that Ryugu is most similar to CI chondrites but has lower albedo, higher porosity and more fragile characteristics.
    Type of Medium: Online Resource
    ISSN: 2397-3366
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2879712-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Earth, Planets and Space, Springer Science and Business Media LLC, Vol. 72, No. 1 ( 2020-12)
    Abstract: The precise orbit of the Hayabusa2 spacecraft with respect to asteroid Ryugu is dynamically determined using the data sets collected by the spacecraft’s onboard laser altimeter (LIght Detection And Ranging, LIDAR) and automated image tracking (AIT). The LIDAR range data and the AIT angular data play complementary roles because LIDAR is sensitive to the line-of-sight direction from Hayabusa2 to Ryugu, while the AIT is sensitive to the directions perpendicular to it. Using LIDAR and AIT, all six components of the initial state vector can be derived stably, which is difficult to achieve using only LIDAR or AIT. The coefficient of solar radiation pressure (SRP) of the Hayabusa2 spacecraft and standard gravitational parameter ( GM ) of Ryugu can also be estimated in the orbit determination process, by combining multiple orbit arcs at various altitudes. In the process of orbit determination, the Ryugu-fixed coordinate of the center of the LIDAR spot is determined by fitting the range data geometrically to the topography of Ryugu using the Markov Chain Monte Carlo method. Such an approach is effective for realizing the rapid convergence of the solution. The root mean squares of the residuals of the observed minus computed values of the range and brightness-centroid direction of the image are 1.36 m and 0.0270°, respectively. The estimated values of the GM of Ryugu and a correction factor to our initial SRP model are 29.8 ± 0.3 m 3 /s 2 and 1.13 ± 0.16, respectively.
    Type of Medium: Online Resource
    ISSN: 1880-5981
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2087663-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Earth, Planets and Space, Springer Science and Business Media LLC, Vol. 73, No. 1 ( 2021-12)
    Abstract: In this study, we determined the alignment of the laser altimeter aboard Hayabusa2 with respect to the spacecraft using in-flight data. Since the laser altimeter data were used to estimate the trajectory of the Hayabusa2 spacecraft, the pointing direction of the altimeter needed to be accurately determined. The boresight direction of the receiving telescope was estimated by comparing elevations of the laser altimeter data and camera images, and was confirmed by identifying prominent terrains of other datasets. The estimated boresight direction obtained by the laser link experiment in the winter of 2015, during the Earth’s gravity assist operation period, differed from the direction estimated in this study, which fell on another part of the candidate direction; this was not selected in a previous study. Assuming that the uncertainty of alignment determination of the laser altimeter boresight was 4.6 pixels in the camera image, the trajectory error of the spacecraft in the cross- and/or along-track directions was determined to be 0.4, 2.1, or 8.6 m for altitudes of 1, 5, or 20 km, respectively.
    Type of Medium: Online Resource
    ISSN: 1880-5981
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2087663-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature Astronomy, Springer Science and Business Media LLC, Vol. 6, No. 10 ( 2022-08-15), p. 1163-1171
    Abstract: Volatile and organic-rich C-type asteroids may have been one of the main sources of Earth’s water. Our best insight into their chemistry is currently provided by carbonaceous chondritic meteorites, but the meteorite record is biased: only the strongest types survive atmospheric entry and are then modified by interaction with the terrestrial environment. Here we present the results of a detailed bulk and microanalytical study of pristine Ryugu particles, brought to Earth by the Hayabusa2 spacecraft. Ryugu particles display a close compositional match with the chemically unfractionated, but aqueously altered, CI (Ivuna-type) chondrites, which are widely used as a proxy for the bulk Solar System composition. The sample shows an intricate spatial relationship between aliphatic-rich organics and phyllosilicates and indicates maximum temperatures of ~30 °C during aqueous alteration. We find that heavy hydrogen and nitrogen abundances are consistent with an outer Solar System origin. Ryugu particles are the most uncontaminated and unfractionated extraterrestrial materials studied so far, and provide the best available match to the bulk Solar System composition.
    Type of Medium: Online Resource
    ISSN: 2397-3366
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2879712-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Space Science Reviews, Springer Science and Business Media LLC, Vol. 216, No. 7 ( 2020-10)
    Type of Medium: Online Resource
    ISSN: 0038-6308 , 1572-9672
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2017804-9
    detail.hit.zdb_id: 2561549-X
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 8, No. 46 ( 2022-11-18)
    Abstract: The Hayabusa2 metal-sealed container successfully returned extraterrestrial He and Ne as a gas phase from the asteroid Ryugu.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 379, No. 6634 ( 2023-02-24)
    Abstract: Surface material from the near-Earth carbonaceous (C-type) asteroid (162173) Ryugu was collected and brought to Earth by the Hayabusa2 spacecraft. Ryugu is a dark, primitive asteroid containing hydrous minerals that are similar to the most hydrated carbonaceous meteorites. C-type asteroids are common in the asteroid belt and have been proposed as the parent bodies of carbonaceous meteorites. The samples of Ryugu provide an opportunity to investigate organic compounds for comparison with those from carbonaceous meteorites. Unlike meteorites, the Ryugu samples were collected and delivered for study under controlled conditions, reducing terrestrial contamination and the effects of atmospheric entry. RATIONALE Primitive carbonaceous chondrite meteorites are known to contain a variety of soluble organic molecules (SOMs), including prebiotic molecules such as amino acids. Meteorites might have delivered amino acids and other prebiotic organic molecules to the early Earth and other rocky planets. Organic matter in the Ryugu samples is the product of physical and chemical processes that occurred in the interstellar medium, the protosolar nebula, and/or on the planetesimal that became Ryugu’s parent body. We investigated SOMs in Ryugu samples principally using mass spectrometry coupled with liquid or gas chromatography. RESULTS We identified numerous organic molecules in the Ryugu samples. Mass spectroscopy detected hundreds of thousands of ion signals, which we assigned to ~20,000 elementary compositions consisting of carbon, hydrogen, nitrogen, oxygen, and/or sulfur. Fifteen amino acids, including glycine, alanine, and α-aminobutyric acid, were identified. These were present as racemic mixtures (equal right- and left-handed abundances), consistent with an abiotic origin. Aliphatic amines (such as methylamine) and carboxylic acids (such as acetic acid) were also detected, likely retained on Ryugu as organic salts. The presence of aromatic hydrocarbons, including alkylbenzenes, fluoranthene, and pyrene, implies hydrothermal processing on Ryugu’s parent body and/or presolar synthesis in the interstellar medium. Nitrogen-containing heterocyclic compounds were identified as their alkylated homologs, which could have been synthesized from simple aldehydes and ammonia. In situ analysis of a grain surface showed heterogeneous spatial distribution of alkylated homologs of nitrogen- and/or oxygen-containing compounds. CONCLUSION The wide variety of molecules identified indicates that prolonged chemical processes contributed to the synthesis of soluble organics on Ryugu or its parent body. The highly diverse mixture of SOMs in the samples resembles that seen in some carbonaceous chondrites. However, the SOM concentration in Ryugu is less than that in moderately aqueously altered CM (Mighei-type) chondrites, being more similar to that seen in warm aqueously altered CI (Ivuna-type) chondrites. The chemical diversity with low SOM concentration in Ryugu is consistent with aqueous organic chemistry at modest temperatures on Ryugu’s parent asteroid. The samples collected from the surface of Ryugu were exposed to the hard vacuum of space, energetic particle irradiation, heating by sunlight, and micrometeoroid impacts, but the SOM is still preserved, likely by being associated with minerals. The presence of prebiotic molecules on the asteroid surface suggests that these molecules can be transported throughout the Solar System. SOMs detected in surface samples of asteroid Ryugu. Chemical structural models are shown for example molecules from several classes identified in the Ryugu samples. Gray balls are carbon, white are hydrogen, red are oxygen, and blue are nitrogen. Clockwise from top: amines (represented by ethylamine), nitrogen-containing heterocycles (pyridine), a photograph of the sample vials for analysis, polycyclic aromatic hydrocarbons (PAHs) (pyrene), carboxylic acids (acetic acid), and amino acids (β-alanine). The central hexagon shows a photograph of the Ryugu sample in the sample collector of the Hayabusa2 spacecraft. The background image shows Ryugu in a photograph taken by Hayabusa2. CREDIT: JAXA, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Chiba Institute of Technology, Meiji University, University of Aizu, AIST, NASA, Dan Gallagher.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...