GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 32, No. 5 ( 2014-02-10), p. 415-423
    Abstract: Deep molecular response (MR 4.5 ) defines a subgroup of patients with chronic myeloid leukemia (CML) who may stay in unmaintained remission after treatment discontinuation. It is unclear how many patients achieve MR 4.5 under different treatment modalities and whether MR 4.5 predicts survival. Patients and Methods Patients from the randomized CML-Study IV were analyzed for confirmed MR 4.5 which was defined as ≥ 4.5 log reduction of BCR-ABL on the international scale (IS) and determined by reverse transcriptase polymerase chain reaction in two consecutive analyses. Landmark analyses were performed to assess the impact of MR 4.5 on survival. Results Of 1,551 randomly assigned patients, 1,524 were assessable. After a median observation time of 67.5 months, 5-year overall survival (OS) was 90%, 5-year progression-free-survival was 87.5%, and 8-year OS was 86%. The cumulative incidence of MR 4.5 after 9 years was 70% (median, 4.9 years); confirmed MR 4.5 was 54%. MR 4.5 was reached more quickly with optimized high-dose imatinib than with imatinib 400 mg/day (P = .016). Independent of treatment approach, confirmed MR 4.5 at 4 years predicted significantly higher survival probabilities than 0.1% to 1% IS, which corresponds to complete cytogenetic remission (8-year OS, 92% v 83%; P = .047). High-dose imatinib and early major molecular remission predicted MR 4.5 . No patient with confirmed MR 4.5 has experienced progression. Conclusion MR 4.5 is a new molecular predictor of long-term outcome, is reached by a majority of patients treated with imatinib, and is achieved more quickly with optimized high-dose imatinib, which may provide an improved therapeutic basis for treatment discontinuation in CML.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2014
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 4008-4008
    Abstract: Depth of molecular remission on tyrosine kinase inhibitor (TKI) treatment is of rising importance for chronic myeloid leukemia (CML) patients (pts) with regard to possible treatment discontinuation and competing TKIs available to improve molecular response. At present, it is unknown which level of deep molecular response is necessary for optimal prognosis and for successfully stopping therapy. The aim of this work is both to evaluate the technical feasibility of molecular monitoring at the mentioned level and to search for factors allowing to predict MR5.0 in pts on imatinib (IM)-based treatment. Methods Real-time quantitative PCR on mRNA BCR-ABL transcripts in addition to total ABL transcripts as internal control has been performed on a LightCycler platform in 1,442 pts within the randomized CML-Study IV and adapted according to the International Scale (IS). In order to qualify for MR5.0 the BCR-ABLIS expression should meet one of the following criteria: a positive result ≤0.001% or a negative result with a minimum sample quality of 100,000 ABL copies (Cross et al., Leukemia 2012). Calculating cumulative incidences of remission or progression, the competing risks progression and/or death before possible progression were considered. Cox models were estimated for the multivariate analysis. Results In 1,198 of the 1,442 molecularly examined pts at least one sample fulfilled the sensitivity criteria for a MR5.0 (8,266 of 24,101 samples, 34.3%). Cumulative incidence of MR5.0 was 51% at 8 years. The median time to MR5.0 according to randomized treatment arms differed as follows: IM 800mg 79.7 months (mos), IM 400mg 95.0 mos, IM 400mg + IFNα 98.0 mos, IM 400mg + AraC 103.3 mos, IM 400mg after IFN failure 112.9 mos. A Cox model examining the different treatment arms compared to IM 400mg revealed a significantly higher chance for MR5.0 in the IM 800mg arm (HR 1.305, 95% CI 1.003-1.698, p=0.048). Baseline factors like thrombocytosis 〉 450/nl were associated with better responses (HR 1.701 compared to 〈 450/nl, 95% CI 1.405-2.059, p 〈 0.001) and higher leukocyte counts 〉 100/nl (HR 0.503 compared to 〈 50/nl, 95% CI 0.400-0.632, p 〈 0.001) and 50-100/nl (HR 0.746 compared to 〈 50/nl, 95% CI 0.591-0.942, p=0.014) with unfavorable responses. Other upfront factors like age, gender, blasts, eosinophils, hemoglobin, and EUTOS score did not significantly influence the probability for MR5.0. Taken all treatment arms together, our analyses have shown that the chance of achieving a MR5.0 by 8 years was considerably reduced if the pts had a BCR-ABLIS 〉 10% at 3 mos (40.2% vs 58.0%), 〉 1% at 6 mos (40.3% vs 68.7%), 〉 0.1% at 12 mos (37.7% vs 72.0%), and 〉 0.1% at 24 mos (21.5% vs 60.5%). Conclusion This evaluation of a large randomized trial reveals feasibility of MR5.0 detection in the majority of pts underlining the benefits of standardized molecular monitoring on the IS with optimized highly sensitive technologies. Baseline low leukocyte count, high thrombocyte count and high dose IM treatment are predictors of future MR5.0. Further, early molecular landmarks qualify for excellent outcome giving hope to a rising number of pts to successfully discontinue treatment and avoid possible side effects or comorbidities. Disclosures: Müller: Novartis: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria, Research Funding; Ariad: Consultancy, Honoraria, Research Funding. Hehlmann:BMS: Consultancy, Research Funding; Novartis: Research Funding. Hochhaus:Novartis: Consultancy, Honoraria, Research Funding, Travel Other; BMS: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria; Ariad: Consultancy, Honoraria. Saussele:Novartis: Honoraria, Research Funding, Travel Other; BMS: Honoraria, Research Funding, Travel, Travel Other; Pfizer: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 3996-3996
    Abstract: Current evidence indicates that acquired genetic instability in chronic myeloid leukemia (CML) as a consequence of the balanced reciprocal translocation t(9;22)(q34;q11) or the variant translocation t(v;22) and the resulting BCR-ABL fusion causes the continuous acquisition of additional chromosomal aberrations (ACA) and mutations and thereby progression to accelerated phase and blast crisis (BC). At least 10% of patients in chronic phase (CP) CML show ACA already at diagnosis and more than 80% of patients acquire ACA during the transformation process into BC. Therefore, alterations at diagnosis as well as acquisition of chromosomal changes during treatment are considered as a poor prognostic factor. Differences in progression-free survival (PFS) and overall survival (OS) have been detected depending on the type of ACA. Patients with major route ACA (+8, i(17)(q10), +19, +der(22)t(9;22)(q34;q11)) and with other alterations like -X, del(1)(q21), del(5)(q11q14), +10, -21 at diagnosis resulting in an unbalanced karyotype have a worse outcome. Patients with minor route ACA (for example reciprocal translocations other than the t(9;22)(q34;q11) (e.g. t(1;21), t(2;16), t(3;12), t(4;6), t(5;8), t(15;20)) resulting in a balanced karyotype show no differences in OS and PFS compared to patients with the standard translocation, a variant translocation or the loss of the Y chromosome (Fabarius et al., Blood 2011). Here we compare the type of chromosomal changes (i.e. balanced vs. unbalanced karyotypes) during the course of the disease from CP to BC aiming to provide a valid parameter for future risk stratification. Patients and Methods Clinical and cytogenetic data available from 1,346 out of 1,524 patients at diagnosis (40% females vs. 60% males; median age 53 years (range, 16-88)) with Philadelphia and BCR-ABL positive CP CML included until March 2012 in the German CML-Study IV (a randomized 5-arm trial to optimize imatinib therapy) were investigated. ACA were comparatively analyzed in CP and in BC. Results At diagnosis 1,174/1,346 patients (87%) had the standard t(9;22)(q34;q11) only and 75 patients (6%) had a variant t(v;22). Ninety-seven patients (7%) had additional cytogenetic aberrations. Of these, 44 patients (3%) lacked the Y chromosome (-Y) and 53 patients (4%) had ACA. Regarding the patients with ACA thirty-six of the 53 patients (68%) had an unbalanced karyotype and 17/53 patients (32%) a balanced karyotype. During the course of the disease 73 patients (out of 1,524 patients) developed a BC during the observation time (5%). Cytogenetic data were available in 52 patients with BC (21 patients with BC had no cytogenetic analysis). Three patients had a normal male or female karyotype after stem cell transplantation. Nine patients showed the translocation t(9;22)(q34;q11) or a variant translocation t(v;22) (six and three patients, respectively) only and in 40 patients ACA could be observed in BC (40/49 (82%)). Out of these 40 patients with ACA, 90% showed an unbalanced karyotype whereas only 10% of patients had a balanced karyotype. No male patient in BC showed the loss of the Y chromosome pointing to a minor effect of this numerical alteration on disease progression. Conclusion We conclude that patients with CML and unbalanced karyotype at diagnosis are under higher risk to develop CML BC compared to patients with balanced karyotypes or compared to patients without ACA. In BC, 90% of CML patients showed unbalanced karyotypes (only 68% of CML patients at diagnosis have unbalanced karyotypes) supporting the hypothesis that the imbalance of chromosomal material is a hallmark of disease progression, representing the natural history of the disease from CP to BC and indicating therefore a strong prognostic impact. Consequently, different therapeutic options (such as intensive therapy or stem cell transplantation) should be considered for patients with unbalanced karyotypes in CP CML at diagnosis. Disclosures: Haferlach: MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Hehlmann:BMS: Consultancy, Research Funding; Novartis: Research Funding. Hochhaus:Novartis: Consultancy, Honoraria, Research Funding, travel Other; BMS: Consultancy, Honoraria, Research Funding; Pfizer : Consultancy, Honoraria; Ariad : Consultancy, Honoraria. Müller:Ariad: Honoraria; BMS: Honoraria, Research Funding; Novartis: Honoraria, Research Funding, Speakers Bureau. Saussele:Pfizer: Honoraria; BMS: Honoraria, Research Funding, Travel, Travel Other; Novartis: Honoraria, Research Funding, Travel Other.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 3138-3138
    Abstract: Introduction: The clonal selection of a mutant BCR-ABL positive clone can be observed in about one of two patients with imatinib-resistant chronic myeloid leukemia (CML). The early detection of BCR-ABL kinase domain mutations is crucial, since it allows to change the tyrosine kinase inhibitor (TKI) regimen in a timely manner and may therefore prevent disease progression and the accumulation of further genetic lesions. European LeukemiaNet (ELN) recommendations suggest a mutation analysis if optimal response criteria are not achieved at 3, 6, 12 or 18 months, or whenever a loss of optimal response occurs (Soverini et al., Blood 2011). Several attempts have been made to derive this indication from a specific increase of BCR-ABL levels. Here we report on the correlation of a rise in BCR-ABL transcript levels and the prevalence of BCR-ABL kinase domain mutations in imatinib-treated patients of the CML-Study IV. Methods: A total of 1,173 patients were enrolled until 2009 and randomized to one of four imatinib-based treatment arms. BCR-ABLIS of 988 patients was determined in 7,876 samples by quantitative RT-PCR in the central laboratory (median sample number per patient: 8.4, range 1-37; median follow up: 34 months, range 0-86), representing the eligible patients for the study. Thereby, the estimated intra-laboratory variance is assumed to be about 20%. A first rise of BCR-ABLIS to at least two-fold and 〉 0.1% between two samples of a patient's molecular course defined a sample suspected of bearing a mutant BCR-ABL positive clone. A mutation analysis was performed on this critical sample by direct sequencing of ABL exons 4 to 10. Results: A critical rise in BCR-ABLIS was observed in 231 of 988 patients (23%) after a median of 15.2 months on treatment (range 2.8-59.4). In the corresponding sample 33 mutant clones could be detected in 31 patients (13%). Thereby a steeper rise of BCR-ABLIS was correlated with a higher incidence of BCR-ABL mutations in the respective group (table). A total of 18 different mutations could be detected, the most frequent were: M244V, n=7 (21%); E255K, n=4 (12%); T315I, n=3 (9%); L248V, G250E, L387M and F486S, n=2 (6%), respectively. Mutations occur in a substantial proportion (8%) of patients with an only 2 to 3-fold rise of BCR-ABLIS transcript levels (table). Therefore, the most sensitive cut-off should be applied and mutation analysis may be triggered by a doubling of BCR-ABL transcripts at levels 〉 0.1% IS. Conclusion: BCR-ABL kinase domain mutations occur already in a substantial proportion of patients with a doubling of BCR-ABL transcript levels, which should determine mutation analysis. Table 1. Rise of BCR-ABL expression Patients (n) Patients with BCR-ABL mutations (n) Patients with BCR-ABL mutations (%) Inter-sample interval(median, days) 2 to 3-fold 72 6 8.3 98 3 to 5-fold 50 3 6.0 100 5 to 10-fold 39 4 10.3 99 10 to 100-fold 49 10 20.4 98 〉 100-fold 21 8 38.1 125 〉 2-fold (total) 231 31 13.4 101 Disclosures Hanfstein: Novartis: Research Funding; Bristol-Myers Squibb: Honoraria. Hehlmann:Novartis: Research Funding; Bristol-Myers Squibb: Research Funding. Saussele:Novartis: Honoraria, Research Funding, Travel Other; Bristol-Myers Squibb: Honoraria, Research Funding, Travel, Travel Other; Pfizer: Honoraria, Travel, Travel Other. Schnittger:MLL Munich Leukemia Laboratory: Equity Ownership. Neubauer:MedUpdate: Honoraria, Speakers Bureau. Kneba:Novartis: Consultancy, Equity Ownership, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Pfirrmann:Novartis: Consultancy; Bristol-Myers Squibb: Honoraria. Hochhaus:Pfizer: Consultancy, Research Funding; ARIAD: Honoraria, Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding. Müller:Novartis: Honoraria, Research Funding; Bristol Myers Squibb: Honoraria, Research Funding; ARIAD: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 3761-3761
    Abstract: Abstract 3761 Introduction: Early assessment of molecular and cytogenetic response at 3 months of imatinib treatment has been shown to predict survival and might trigger treatment intensification in slow responders who are supposed to harbor a BCR-ABL positive clone with inferior susceptibility to tyrosine kinase inhibition (Hanfstein et al., Leukemia 2012). BCR-ABL transcript levels at 3 months depend on levels at diagnosis and the subsequent decline under treatment. Which of both parameters determines the clinical course and allows for prediction of survival is unclear. The BCR-ABL/ABL ratio is supposed to be skewed for high values, e.g. 〉 10%, due to the fact that ABL transcripts are also amplified from the fusion gene and in fact BCR-ABL/(ABL + BCR-ABL) is determined. Therefore, Beta-glucuronidase (GUS) was used as reference gene to determine high transcript levels at diagnosis. In addition, the linearity of the BCR-ABL/GUS scale allowed for an optimization of prognostic cut-off levels. We compared the significance of 1) BCR-ABL/GUS at diagnosis, 2) BCR-ABL/GUS at 3 months, 3) the individual reduction of transcripts given by (BCR-ABL/GUS at 3 months)/(BCR-ABL/GUS at diagnosis), and 4) the established 10% BCR-ABL/ABL landmark expressed on the international scale (BCR-ABLIS). Patients and methods: A total of 337 patients (pts) were investigated. According to the protocol of the German CML study IV pts could have been pre-treated with imatinib up to 6 weeks before randomization. 56 pts with imatinib onset before initial blood sampling within the study were excluded from the analysis. A total of 281 evaluable patients (median age 51 years, range 17–85, 42% female) were treated with an imatinib-based therapy consisting of imatinib 400 mg/d (n=76), imatinib 800 mg/d (n=110) and combinations of standard dose imatinib with interferon alpha (n=84) and low-dose cytarabine (n=11). Median follow-up was 4.8 years (range 1–10). Transcript levels of BCR-ABL, ABL, and GUS were determined by quantitative RT-PCR from samples taken before imatinib onset (“at diagnosis”) and 3 month samples. Only patients expressing typical BCR-ABL transcripts (b2a2 and/or b3a2) were considered. Disease progression was defined by the incidence of accelerated phase, blastic phase or death from any reason. A landmark analysis was performed for progression free survival (PFS) and overall survival (OS) after dichotomizing patients by a cut-off optimized by the cumulative martingale residuals method. Results: The median BCR-ABL/GUS ratio was 15.5% at diagnosis (0.07–271) and 0.62% at 3 months (0–34.7) reflecting a decline by 1.4 log. Disease progression was observed in 17 patients (6.0%), 14 of them died (5.0%). With regard to the above described parameters the following findings were observed: 1) at diagnosis no cut-off level could be identified for BCR-ABL/GUS ratios to separate two prognostic groups according to long-term PFS or OS. 2) At 3 months an optimized 2.8% BCR-ABL/GUS cut-off separated a high-risk group of 61 pts (22% of pts, 8-year PFS 78%, 8-year OS 81%) from a good-risk group of 220 pts (78% of pts, 8-year PFS 94%, 8-year OS 94%, p 〈 0.001, respectively). 3) At 3 months an individual reduction of BCR-ABL transcripts to at least 40% (0.4 log) of the initial level separated best and divided a high-risk group of 33 pts (12% of pts, 8-year PFS 74%, 8-year OS 80%) from a good-risk group of 248 pts (88% of pts, 8-year PFS 93%, 8-year OS 93%, p 〈 0.001, respectively). 4) When the established 10% BCR-ABLIS at 3 months was investigated, 63 pts were high-risk (22% of pts, 8-year PFS 82%, 8-year OS 85%) and 218 good-risk (78% of pts, 8-year PFS 91%, 8-year OS 93%, p=0.002 for PFS, p=0.011 for OS). Conclusions: Initial BCR-ABL transcript levels at diagnosis did not show prognostic significance. To predict survival at 3 months of treatment the absolute transcript level normalized by ABL or GUS can be used. Disclosures: Schnittger: MLL Munich Leukemia Laboratory: Equity Ownership. Hochhaus:Novartis, BMS, MSD, Ariad, Pfizer: Consultancy Other, Honoraria, Research Funding. Müller:Novartis, BMS: Consultancy, Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 357-357
    Abstract: Abstract 357 Treatment of CML with imatinib of 400 mg can be unsatisfactory. Treatment optimization is warranted. The German CML-Study group has therefore conducted a randomized study comparing imatinib 800 mg vs 400 mg vs 400 mg + IFN. A significantly faster achievement of MMR at 12 months has been observed with imatinib 800 mg in a tolerability adapted manner and MMR by 12 months has been found to translate into better overall survival. Since stable CMR has been associated with durable off-treatment remissions we sought to analyse the impact of tolerability-adapted imatinib 800 mg on CMR and survival. Standardized determinations of molecular response and evaluation of its impact on outcome are goals of CML-Study IV. CMR4 is defined as a BCR-ABL/ABL ratio of 〈 0,01 on the International Scale. From July 2002 – April 30, 2009 1022 newly diagnosed patients with CML in chronic phase were randomized, 1012 were evaluable (338 with imatinib 800 mg, 324 with imatinib 400 mg, 350 with imatinib plus IFN). Median observation time was 40 months. The median average daily imatinib doses were 628 mg in the 800 mg arm and 400 mg in the 400 mg based arms. The actual median daily doses in the 800 mg arm per 3-months periods were: 555 mg, 737 mg, 613 mg, 600 mg, and 600 mg thereafter, reflecting the run–in period with imatinib 400 mg for 6 weeks in the first period and the adaptation to tolerability from the third 3-months period onwards. Median daily imatinib doses in the 400 mg arms were 400 mg throughout. Adaptation of imatinib dose in the 800 mg arm according to tolerability is reflected by similar higher-grade adverse events rates (WHO grades 3 and 4) with all treatments. Significantly higher remission rates were achieved with imatinib 800 mg by 12 months. The cumulative incidences of CCR by 12 months were 63% [95%CI:56.4-67.9] with imatinib 800 mg vs 50% [95%CI:43.0-54.5] with the two 400 mg arms. The cumulative incidences of MMR by 12 months were 54.8% [95%CI:48.7-59.7] with imatinib 800 mg vs 30.8% [95%CI:26.6-36.1] with imatinib 400 mg vs 34.7% [95%CI:29.0-39.2] with imatinib + IFN. The cumulative incidences of CMR4 compared with the MMR incidences over the first 36 months are shown in Table 1. Imatinib 800 mg shows superior CMR4 rates over the entire 36 months period, CMR4 is reached significantly faster with imatinib 800 mg as compared to the 400 mg arms. The CMR4 rates reach 56.8% by 36 months [95%CI:49.4-63.5] as compared to 45.5% with imatinib 400 mg [95%CI:38.7-51.0] and 40.5% with imatinib plus IFN [95%CI:34.6-46.3] . Most patients have stable CMR4 over the entire period. Time after start of treat-ment (months) Cumulative incidences MMR(%) CMR4 (%) IM400 n=306 D IM800 n=328 D IM400 +IFN n=336 IM400 n=306 D IM800 n=328 D IM400 +IFN n=336 6 8.6 9.5 18.1 9.7 8.4 3 0.7 3.7 1.3 2.4 12 30.8 24.0 54.8 20.1 34.7 7.5 12.3 19.8 7.4 12.4 18 50.3 18.1 68.4 14.3 54.1 21.2 12.2 33.4 9.8 23.6 24 63 13.0 76.0 13.2 62.8 30.7 12.3 43 13 30.0 36 79.3 2.3 81.6 10.9 70.7 45.5 11.3 56.8 16.3 40.5 In summary, superior CMR4 rates are achieved with high-dose imatinib adapted to good tolerability, and more patients in the tolerability-adapted 800 mg arm have stable CMR4 qualifying for treatment discontinuation as compared to the 400 mg based arms. With improved application imatinib remains first choice for early CML. Disclosures: Koschmieder: Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Membership on an entity's Board of Directors or advisory committees. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. German CML-Study Group:Deutsche Krebshilfe: Research Funding; Novartis: Research Funding; Roche: Research Funding; BMBF: Research Funding; Essex: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 91-91
    Abstract: Background Five-year overall survival (OS) of chronic myeloid leukemia (CML) patients treated with imatinib exceeds 90%. With many tyrosine kinase inhibitors (TKI) available as treatment options for CML, the influence of TKI therapy on OS is difficult to define. Comorbidities can complicate randomized trials. Their influence on OS in CML has not been studied so far. Aims We sought to evaluate the influence of comorbidities at diagnosis of CML on remission rates and OS of patients with Philadelphia and/or BCR-ABL positive chronic-phase CML. The CML-Study IV, a randomized five-arm trial designed to optimize imatinib therapy alone or in combination, used very few exclusion criteria as compared to other studies which typically excluded patients with severe illnesses. Methods The age-adjusted Charlson Comorbidity Index (CCI) is the most extensively studied comorbidity index (Charlson ME et al., 1987) and has been validated for long-term studies. The score weighs a) the severity of comorbidities (e.g. one point is allocated to myocardial infarction and diabetes, two points to non-active malignancies) and b) the age of patients (with one point for each decade above 40 years). The CCI at diagnosis was calculated for each randomized patient. For the analyses, patients were grouped into CCI 2, 3-4, 5-6, and ≥7. Performance status was measured by the Karnofsky Score (KS) and patients were grouped into 50-80, 〉 80- 〈 100, and 100. Correlation analyses were performed by the chi-square test. Survival probabilities were calculated by Kaplan-Meier curves. Calculating cumulative incidences, the competing risks progression and/or death were considered. Cox models were estimated for the multivariate analysis to analyse the prognostic influence of the candidate factors age, sex, leukocytes, hemoglobin, EUTOS score, KS, and CCI on OS. Results 1551 patients were randomized from 2002 to 2012, 1524 patients were evaluable. Median follow-up time was 67.5 months. Additional to CML, 521 index comorbidities were reported in 1519 patients resulting in the following CCI groups: i) CCI 2: 589 patients, ii) CCI 3 or 4: 599 patients, iii) CCI 5 or 6: 229 patients, and iv) CCI ≥ 7: 102 patients. Median value of the CCI was 3 (range: 2-12). The distribution of the CCI groups was not different between treatment arms. Most common comorbidities were diabetes (n=106), non-active cancer (n=102), chronic pulmonary disease (n=74), renal insufficiency (n=47), myocardial infarction (n=38), cerebrovascular disease (n=29), congestive heart failure (n=28), and peripheral vascular disease (n=28). Between patients with CCI 2, 3-4, 5-6, and ≥7 no significant differences in remission rates were found neither for time to complete cytogenetic remission (CCR) nor for time to major molecular remission (MMR). Median times to CCR were 12.9, 12.6, 13.7, and 13.1 months and to MMR 17.5, 15.9, 16.5, and 18.1 months, respectively. No differences were observed between the CCI groups for the cumulative incidences of progression. As expected, significant differences in OS according to CCI at diagnosis were observed (s. Fig. 1, p 〈 0.001). Probabilities of OS at 8 years for patients with CCI 2, 3-4, 5-6, and ≥7 were 93.6%, 89.4%, 78.7%, and 45.2%. We found a correlation between CCI and KS (p 〈 0.001). In multivariate analysis CCI (p 〈 0.001), KS (p=0.022), and EUTOS Score (p=0.012) were significant predictors of OS. Hazard ratios for the CCI group 3-4, 5-6, 〉 7 (each vs. 2), were 1.695 (95%-confidence interval, CI 1.066-2.695), 3.231 (CI 1.942-5.376) and 6.495 (CI 3.817-11.111), respectively. Separating the CCI into an age-related part and a comorbidity-related part, the comorbidity-related part was still an important risk factor (Wald test, p=0.002). Conclusions Comorbidities of CML-patients do not seem to have an impact on the success of imatinib treatment. In CML-Study IV, even patients with a considerable comorbidity benefitted from imatinib as the chances to achieve MMR and CCR did not differ from those of healthier CML-patients. Our data also indicate that OS alone is not any more an appropriate measure for the effectiveness of a specific treatment for CML, as TKI have reduced the CML-related lethality to too low levels. Adjusting for comorbidity is essential for a valid comparison and interpretation of OS observed with different TKIs in CML-patients. Disclosures: Saussele: Pfizer: Honoraria; BMS: Honoraria, Research Funding, Travel, Travel Other; Novartis: Honoraria, Research Funding, Travel Other. Hehlmann:BMS: Consultancy, Research Funding; Novartis: Research Funding. Hochhaus:Novartis: Consultancy, Honoraria, Research Funding, Travel Other; BMS: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria; Ariad: Consultancy, Honoraria. Müller:Ariad: Honoraria; BMS: Honoraria, Research Funding; Novartis: Honoraria, Research Funding, Speakers Bureau.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 253-253
    Abstract: Early assessment of BCR-ABL transcript levels at 3 months allows the prediction of survival and may serve as a trigger for treatment intensification in CML patients with slow response to imatinib. The exact decline of BCR-ABL transcript levels within the first 3 months of treatment is defined by the ratio BCR-ABL transcripts at 3 months to BCR-ABL transcripts at baseline. This ratio might better reflect the individual biology of disease and its susceptibility to tyrosine kinase inhibition. Methods A total of 408 chronic phase CML patients (pts) with baseline and 3 month blood samples available in one single laboratory were investigated. Pts with pre-treatment before first blood sampling were excluded (imatinib with or without hydroxyurea, n=58; hydroxyurea only, n=49). A total of 301 evaluable pts (median age 52 years, range 18-85, 41% female) were treated with an imatinib-based therapy within the CML-Study IV. Median follow-up was 4.8 years. Transcript levels of BCR-ABL, total ABL, and beta-glucuronidase (GUS) were determined by quantitative RT-PCR. Exploratory landmark analyses were performed with regard to overall and progression-free survival (OS, PFS) to evaluate the prognostic significance of (i) BCR-ABL/GUS before treatment, (ii) the individual reduction of transcripts given by (BCR-ABL/GUS at 3 months) / (BCR-ABL/GUS before treatment), and (iii) the 3-month 10% BCR-ABLIS landmark. Results The median BCR-ABL/GUS ratio was 15.5% at diagnosis (0.06-107) and 0.63% at 3 months (0-84) reflecting a decline to the 0.04-fold (1.4 log reduction). i) No prognostic cut-off could be identified for BCR-ABL/GUS before treatment. ii) A reduction to the 0.35-fold of the initial BCR-ABL transcript level at diagnosis (0.46 log reduction) was identified as best cut-off according to a hazard ratio of 5.6 (95%-CI 2.3-13.4, p 〈 0.001 for PFS). Using this cut-off a high-risk group of 48 pts (16% of pts, 5-year PFS and OS: 77% and 83%) was separated from a good-risk group of 253 pts (84% of pts, 5-year PFS and OS: 96% and 98%). iii) As a comparison we investigated the 10% BCR-ABLIS landmark at 3 months with a hazard ratio of 2.4 (95%-CI 1.0-5.8, p=0.06 for PFS). With this landmark a high-risk group of 67 pts (22% of pts, 5-year PFS and OS: 87% and 90%) was separated from a good-risk group of 234 pts (78% of pts, 5-year PFS and OS: 95% and 97%). Conclusion A two-group risk stratification according to the individual reduction of BCR-ABL transcripts to the 0.35-fold of pre-treatment levels yields a superior separation of risk groups with a 5-year difference of 19% for PFS and 15% for OS. This predictive marker might identify patients at risk more precisely than 3-month 10% BCR-ABLIS. Disclosures: Hehlmann: BMS: Consultancy, Research Funding; Novartis: Research Funding. Saussele:Novartis: Honoraria, Research Funding, Travel Other; BMS: Honoraria, Research Funding, Travel, Travel Other; Pfizer: Honoraria. Hochhaus:Novartis: Consultancy, Honoraria, Research Funding, Travel Other; BMS: Consultancy, Honoraria, Research Funding; ARIAD: Consultancy, Honoraria; Pfizer: Consultancy. Müller:Novartis: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria, Research Funding; Ariad: Consultancy, Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 1681-1681
    Abstract: Abstract 1681 Introduction: The prognostic impact of different levels of molecular remission (BCR-ABL transcript expression according to International Scale, IS) at various time points on survival under imatinib treatment is still unclear. Whereas recently published data from the IRIS trial described relevant milestones at 6, 12, and 18 months for event-free and progression-free survival (PFS; Hughes et al., Blood 2010), little is known about an association of molecular response with overall survival (OS). The aim of this evaluation of the German CML Study IV was to elucidate the risk of disease progression and death as a function of the depth of molecular response in order to provide guidance in the interpretation of BCR-ABL levels in the clinical setting. Methods: 1,340 patients (median age 52 years, range 16–88, 60% male) were recruited into the randomized German CML Study IV and treated with an imatinib-based therapy as follows: imatinib 400 mg/d, n=381; imatinib 800 mg/d, n=399; imatinib 400 mg/d + interferon alpha, n=402; imatinib 400 mg/d + low-dose cytarabine, n=158. A total of 1,262 patients with typical b2a2 and b3a2 BCR-ABL transcripts were evaluable. Molecular responses were assessed in 811, 764, 671, and 619 patients at 6, 12, 18, and 24 months, respectively. Disease progression was defined as accelerated phase or blastic phase, or death from any reason. Landmark analyses and log-rank tests for OS and PFS were performed according to the achievement of different BCR-ABL response levels at different time points. Results: Patients were grouped according to the degree of molecular response ( 〈 0.1%, 0.1%-1%, 1%-10%, 〉 10% BCR-ABL IS) at each of the 4 time points and evaluated for 5-year OS and PFS. Estimated 5-year OS for the different molecular response categories was: 97% vs 96% vs 90% vs 88% (6 months, p=0.009); 96% vs 95% vs 89% vs 69% (12 months, p 〈 0.001); 98% vs 97% vs 92% vs 66% (18 months, p 〈 0.001); 97% vs 96% vs 96% vs 68% (24 months, p 〈 0.001). Applying the 4 response categories revealed estimated 5-year PFS of 97% vs 96% vs 91% vs 86% (p=0.004) at 6 months, 97% vs 92% vs 89% vs 72% (p 〈 0.001) at 12 months, 99% vs 95% vs 90% vs 77% (p 〈 0.001) at 18 months, and 97% vs 97% vs 93% vs 65% (p 〈 0.001) at 24 months (s. Table). Conclusions: Faster and deeper response to imatinib-based treatment revealed to be associated with improved overall and progression-free survival. Inferior OS and PFS can be deducted from the synopsis of BCR-ABL expression and treatment duration, e.g. 〉 1% BCR-ABL IS at 6 months or 12 months might be, and 〉 10% BCR-ABL IS should be a trigger for a treatment change. Thereby this analysis might provide decision guidance for alteration or continuation of primary imatinib treatment. Disclosures: Schnittger: Münchner Leukämie Labor: Equity Ownership. German CML Study Group:EU: Research Funding; BMBF: Research Funding; Novartis: Research Funding; Deutsche Krebshilfe: Research Funding; Roche: Research Funding; Essex: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 156-156
    Abstract: Introduction: Early prediction of outcome using response-related predictive landmarks has become a major paradigm in the clinical management of chronic myeloid leukemia (CML). Several studies have shown the predictive impact of 10% BCR-ABLIS at 3 and 6 months for different tyrosine kinase inhibitors. The question, which landmark should define treatment failure and determine treatment intervention has been discussed vividly. However, an objective analysis of quality criteria for different early prognostic landmarks is lacking up to now. Here we compare sensitivity, specificity and the proportion of later disease progressions predicted by 3-month and 6-month landmarks in imatinib-treated patients of the CML-study IV. Methods: A total of 1,303 newly diagnosed patients were assigned to an imatinib-based treatment arm of CML-Study IV by April 2010. Median follow-up was 7.1 years. The number of molecular assessments was as follows: n=789 (at 6 months), n=692 (at 3 months) and n=301 (at 3 months and at diagnosis, without pretreatment). Gene expression levels were determined by quantitative RT-PCR. At 3 and 6 months, a BCR-ABL ratio was calculated using ABL as reference gene and standardized according to the international scale (BCR-ABLIS). In addition, at 3 months and at diagnosis a BCR-ABL ratio was calculated using beta-glucuronidase (GUS) as reference gene in order to ensure linearity of measurement at diagnosis. The log reduction at 3 months was calculated from the BCR-ABL ratio at 3 months and at diagnosis. Due to the time-dependent nature of censored survival data, the sensitivity and specificity at eight years were calculated using the method by Heagerty et al. (Biometrics 2000). Overall survival (OS) is defined by the absence of death from any reason, progression-free survival (PFS) is defined as survival in the absence of progression to accelerated or blastic phase. Landmark analyses were performed to compare survival outcomes according to Kaplan-Meier. Results:Comparing the 10% BCR-ABLIS landmark at 3 and 6 months, 8-year OS and PFS rates are equal or comparable (table). In contrast, sensitivity and specificity differ substantially with an advantage in favor of sensitivity for the 3-month landmark and in favor of specificity for the 6-month landmark. This difference is paralleled by a smaller proportion of high-risk patients and less progressions identified by the 6-month landmark. From a clinical point of view the 6-month landmark is not only less than half as sensitive, moreover a treatment intervention at 6 months might also prevent less progressions due to the delay of 3 months. The half-log reduction landmark at 3 months is as sensitive as 10% BCR-ABLIS at the same time. However, it shows improved specificity and defines the smallest proportion of high-risk patients. Conclusion: The 10% BCR-ABLIS landmark, which is currently defining treatment failure at 6 months according to European LeukemiaNet (ELN) criteria, fails to detect the majority of patients with later disease progression. Less than a half-log reduction of individual baseline BCR-ABL transcript levels at 3 months on treatment identifies patients with later progressions as sensitive but with higher specificity as compared to 10% BCR-ABLIS. Abstract 156. Table Prognostic landmark 8-year OS (%) 8-year PFS (%) P-value for PFS Sensitivity to predict progression (%) Specificity to predict progression (%) High-risk patients Disease progressions classified as high-risk / total 3 months (n=692) 10% BCR-ABLIS 88 vs. 96 82 vs. 90 0.001 41.1 74.6 191 (28%) 32/74 (43%) 6 months (n=789) 10% BCR-ABLIS 88 vs. 96 84 vs. 95 0.001 18.2 93.8 95 (12%) 17/74 (23%) 1% BCR-ABLIS 90 vs. 97 89 vs. 97 〈 0.001 39.6 68.6 291 (37%) 46/74 (62%) 3 months (n=301) 0.5-log reduction 81 vs. 95 75 vs. 94 〈 0.001 42.6 86.9 48 (16%) 10/24 (42%) Disclosures Hanfstein: Novartis: Research Funding; Bristol-Myers Squibb: Honoraria. Hehlmann:Novartis: Research Funding; Bristol-Myers Squibb: Research Funding. Saussele:Novartis: Honoraria, Research Funding, Travel Other; Bristol-Myers Squibb: Honoraria, Research Funding, Travel, Travel Other; Pfizer: Honoraria, Travel, Travel Other. Schnittger:MLL Munich Leukemia Laboratory: Equity Ownership. Neubauer:MedUpdate: Honoraria, Speakers Bureau. Kneba:Novartis: Consultancy, Equity Ownership, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Pfirrmann:Novartis: Consultancy; Bristol-Myers Squibb: Honoraria. Hochhaus:Novartis: Consultancy, Honoraria, Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria; ARIAD: Honoraria, Research Funding; Pfizer: Consultancy, Research Funding. Müller:Novartis: Honoraria, Research Funding; Bristol Myers Squibb: Honoraria, Research Funding; ARIAD: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...