GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 130, No. Suppl_1 ( 2017-12-07), p. 897-897
    Abstract: Background Chronic myeloid leukemia (CML)-study IV was designed to explore whether treatment with imatinib (IM) at 400mg/day (n=400) could be optimized by doubling the dose (n=420), adding IFN (n=430) or cytarabine (n=158) or using IM after IFN-failure (n=128). Methods From July 2002 to March 2012, 1551 newly diagnosed patients in chronic phase were randomized into a 5-arm study. The study was powered to detect a survival difference of 5% at 5 years. The impact of patients' and disease factors on survival was prospectively analyzed. At the time of evaluation, at least 62% of patients still received imatinib, 26.2% were switched to 2nd generation tyrosine kinase inhibitors. Results After a median observation time of 9.5 years, 10-year overall survival was 82%, 10-year progression-free survival 80% and 10-year relative survival 92%. In spite of a faster response with IM800mg, the survival difference between IM400mg and IM800mg was only 3% at 5 years. In a multivariate analysis, the influence on survival of risk-group, major-route chromosomal aberrations, comorbidities, smoking and treatment center (academic vs. other) was significant in contrast to any form of initial treatment optimization. Patients that reached the response milestones 3, 6 and 12 months, had a significant survival advantage of about 6% after 10 years regardless of therapy. The progression probability to blast crisis was 5.8%. Blast crisis was proceeded by high-risk additional chromosomal aberrations. Conclusions For responders, monotherapy with IM400mg provides a close to normal life expectancy independent of the time to response. Survival is more determined by patients' and disease factors than by initial treatment selection. Although improvements are also needed for refractory disease and blast crisis, more life-time can currently be gained by carefully addressing non-CML determinants of survival. Disclosures Hehlmann: Novartis: Research Funding; BMS: Consultancy. Saussele: Pfizer: Honoraria; Incyte: Honoraria; Novartis: Honoraria, Research Funding; BMS: Honoraria, Research Funding. Pfirrmann: BMS: Honoraria; Novartis: Honoraria. Krause: Novartis: Honoraria. Baerlocher: Novartis: Honoraria; BMS: Honoraria; Pfizer: Honoraria. Bruemmendorf: Novartis: Research Funding. Müller: Novartis: Honoraria, Research Funding; BMS: Honoraria, Research Funding; Ariad: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding. Jeromin: MLL Munich Leukemia Laboratory: Employment. Hänel: Roche: Honoraria; Novartis: Honoraria. Burchert: BMS: Honoraria. Waller: Mylan: Consultancy, Honoraria. Mayer: Eisai: Research Funding; Novartis: Research Funding. Link: Novartis: Honoraria. Scheid: Novartis: Honoraria. Schafhausen: Novartis: Honoraria; BMS: Honoraria; Pfizer: Honoraria; Ariad: Honoraria. Hochhaus: Incyte: Research Funding; MSD: Research Funding; Pfizer: Research Funding; Novartis: Research Funding; BMS: Research Funding; ARIAD: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2017
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 104, No. 5 ( 2019-05), p. 955-962
    Type of Medium: Online Resource
    ISSN: 0390-6078 , 1592-8721
    Language: English
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2019
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 32, No. 5 ( 2014-02-10), p. 415-423
    Abstract: Deep molecular response (MR 4.5 ) defines a subgroup of patients with chronic myeloid leukemia (CML) who may stay in unmaintained remission after treatment discontinuation. It is unclear how many patients achieve MR 4.5 under different treatment modalities and whether MR 4.5 predicts survival. Patients and Methods Patients from the randomized CML-Study IV were analyzed for confirmed MR 4.5 which was defined as ≥ 4.5 log reduction of BCR-ABL on the international scale (IS) and determined by reverse transcriptase polymerase chain reaction in two consecutive analyses. Landmark analyses were performed to assess the impact of MR 4.5 on survival. Results Of 1,551 randomly assigned patients, 1,524 were assessable. After a median observation time of 67.5 months, 5-year overall survival (OS) was 90%, 5-year progression-free-survival was 87.5%, and 8-year OS was 86%. The cumulative incidence of MR 4.5 after 9 years was 70% (median, 4.9 years); confirmed MR 4.5 was 54%. MR 4.5 was reached more quickly with optimized high-dose imatinib than with imatinib 400 mg/day (P = .016). Independent of treatment approach, confirmed MR 4.5 at 4 years predicted significantly higher survival probabilities than 0.1% to 1% IS, which corresponds to complete cytogenetic remission (8-year OS, 92% v 83%; P = .047). High-dose imatinib and early major molecular remission predicted MR 4.5 . No patient with confirmed MR 4.5 has experienced progression. Conclusion MR 4.5 is a new molecular predictor of long-term outcome, is reached by a majority of patients treated with imatinib, and is achieved more quickly with optimized high-dose imatinib, which may provide an improved therapeutic basis for treatment discontinuation in CML.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2014
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 3996-3996
    Abstract: Current evidence indicates that acquired genetic instability in chronic myeloid leukemia (CML) as a consequence of the balanced reciprocal translocation t(9;22)(q34;q11) or the variant translocation t(v;22) and the resulting BCR-ABL fusion causes the continuous acquisition of additional chromosomal aberrations (ACA) and mutations and thereby progression to accelerated phase and blast crisis (BC). At least 10% of patients in chronic phase (CP) CML show ACA already at diagnosis and more than 80% of patients acquire ACA during the transformation process into BC. Therefore, alterations at diagnosis as well as acquisition of chromosomal changes during treatment are considered as a poor prognostic factor. Differences in progression-free survival (PFS) and overall survival (OS) have been detected depending on the type of ACA. Patients with major route ACA (+8, i(17)(q10), +19, +der(22)t(9;22)(q34;q11)) and with other alterations like -X, del(1)(q21), del(5)(q11q14), +10, -21 at diagnosis resulting in an unbalanced karyotype have a worse outcome. Patients with minor route ACA (for example reciprocal translocations other than the t(9;22)(q34;q11) (e.g. t(1;21), t(2;16), t(3;12), t(4;6), t(5;8), t(15;20)) resulting in a balanced karyotype show no differences in OS and PFS compared to patients with the standard translocation, a variant translocation or the loss of the Y chromosome (Fabarius et al., Blood 2011). Here we compare the type of chromosomal changes (i.e. balanced vs. unbalanced karyotypes) during the course of the disease from CP to BC aiming to provide a valid parameter for future risk stratification. Patients and Methods Clinical and cytogenetic data available from 1,346 out of 1,524 patients at diagnosis (40% females vs. 60% males; median age 53 years (range, 16-88)) with Philadelphia and BCR-ABL positive CP CML included until March 2012 in the German CML-Study IV (a randomized 5-arm trial to optimize imatinib therapy) were investigated. ACA were comparatively analyzed in CP and in BC. Results At diagnosis 1,174/1,346 patients (87%) had the standard t(9;22)(q34;q11) only and 75 patients (6%) had a variant t(v;22). Ninety-seven patients (7%) had additional cytogenetic aberrations. Of these, 44 patients (3%) lacked the Y chromosome (-Y) and 53 patients (4%) had ACA. Regarding the patients with ACA thirty-six of the 53 patients (68%) had an unbalanced karyotype and 17/53 patients (32%) a balanced karyotype. During the course of the disease 73 patients (out of 1,524 patients) developed a BC during the observation time (5%). Cytogenetic data were available in 52 patients with BC (21 patients with BC had no cytogenetic analysis). Three patients had a normal male or female karyotype after stem cell transplantation. Nine patients showed the translocation t(9;22)(q34;q11) or a variant translocation t(v;22) (six and three patients, respectively) only and in 40 patients ACA could be observed in BC (40/49 (82%)). Out of these 40 patients with ACA, 90% showed an unbalanced karyotype whereas only 10% of patients had a balanced karyotype. No male patient in BC showed the loss of the Y chromosome pointing to a minor effect of this numerical alteration on disease progression. Conclusion We conclude that patients with CML and unbalanced karyotype at diagnosis are under higher risk to develop CML BC compared to patients with balanced karyotypes or compared to patients without ACA. In BC, 90% of CML patients showed unbalanced karyotypes (only 68% of CML patients at diagnosis have unbalanced karyotypes) supporting the hypothesis that the imbalance of chromosomal material is a hallmark of disease progression, representing the natural history of the disease from CP to BC and indicating therefore a strong prognostic impact. Consequently, different therapeutic options (such as intensive therapy or stem cell transplantation) should be considered for patients with unbalanced karyotypes in CP CML at diagnosis. Disclosures: Haferlach: MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Hehlmann:BMS: Consultancy, Research Funding; Novartis: Research Funding. Hochhaus:Novartis: Consultancy, Honoraria, Research Funding, travel Other; BMS: Consultancy, Honoraria, Research Funding; Pfizer : Consultancy, Honoraria; Ariad : Consultancy, Honoraria. Müller:Ariad: Honoraria; BMS: Honoraria, Research Funding; Novartis: Honoraria, Research Funding, Speakers Bureau. Saussele:Pfizer: Honoraria; BMS: Honoraria, Research Funding, Travel, Travel Other; Novartis: Honoraria, Research Funding, Travel Other.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 782-782
    Abstract: Abstract 782 Introduction: Current evidence indicates that acquired genetic instability in chronic myeloid leukemia (CML) as a consequence of the t(9;22)(q34;q11) and the resulting BCR-ABL fusion causes the continuous acquisition of additional chromosomal aberrations (ACA) and mutations and thereby progression to accelerated phase and blast crisis (BC). Around 10 –12% of patients in chronic phase (CP) CML have ACA already at diagnosis. During the course of the disease this number rises to 80% in BC. Acquisition of ACA during treatment is considered as a poor prognostic indicator, whereas the impact of ACA at diagnosis is controversial. Patients and methods: Clinical and cytogenetic data of 1151 out of 1311 patients with Philadelphia and BCR-ABL positive CP CML randomized until 2009 to the German CML-Study IV were investigated in a prospective study. There were 459 females (40%) and 692 males (60%). Median age was 53 years (range, 16–88). All patients were treated with imatinib alone or in combination with interferon alpha or araC. The impact of ACA at diagnosis on time to complete cytogenetic and major molecular remission (CCR, MMR) and progression-free and overall survival (PFS, OS) was investigated. Written informed consent was obtained from all patients prior to entering the study. Results: At diagnosis 1003/1151 patients (87%) had the standard t(9;22)(q34;q11) only and 69 patients (6.0%) had a variant t(v;22). In 60 of 69 patients with t(v;22), only one further chromosome was involved in the translocation, in 7 patients two, and in 2 patients three further chromosomes were involved. Seventy-nine patients (6.9%) had ACA. Of these, 38 patients (3.3%) lacked the Y chromosome (-Y) and 41 patients (3.6%) had ACA except -Y. Sixteen of the 41 patients had major-route ACA (+8, i(17)(q10), +der(22)t(9;22)(q34;q11), ider(22)(q10)t(9;22)(q34;q11)) and 25 minor-route ACA [e.g. t(3;12), t(4;6), t(2;16), t(1;21)]. In patients with major-route ACA, trisomy 8 was the most frequent additional alteration (n=9). +der(22)t(9;22)(q34;q11) was observed in six patients, isochromosome (17)(q10) in five patients and ider(22)(q10)t(9;22)(q34;11) in three patients. After a median observation time of 5.3 years for patients with t(9;22), t(v;22), -Y, minor- and major-route ACA median times to CCR were 1.01, 0.95, 0.98, 1.49 and 1.51 years, to MMR 1.40, 1.58, 1.65, 2.49 and 〉 7 years, 5-year PFS 90%, 81%, 88%, 96% and 50% and 5-year OS 92%, 87%, 91%, 96% and 53%, respectively. In patients with major-route ACA times to CCR and MMR were longer. PFS and OS were shorter (p 〈 0.001) than with standard t(9;22)(q34;q11). Loss of Y chromosome had no influence on time to CCR or MMR, PFS and OS. Conclusion: We conclude that the prognostic impact of additional cytogenetic findings at diagnosis of CML is heterogeneous and consideration of their types may be important. Major-route ACA identify a small group of patients with significantly poorer prognosis as compared to all other patients requiring early and more intensive intervention such as stem cell transplantation. Disclosures: Hochhaus: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Ariad: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Kneba:Hoffmann La Roche: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 3773-3773
    Abstract: Abstract 3773 Introduction: The vast majority of chronic myeloid leukemia (CML) patients express a BCR-ABL fusion gene mRNA encoding a 210 kDa tyrosine kinase which is constitutively activated and hence the mainspring of leukemic transformation. Two typical mRNA variants exist that differ in the presence or absence of the 75 basepair BCR exon 14: the e13a2 (lacking exon 14, also known as “b2a2”) and the e14a2 BCR-ABL transcript (“b3a2”). The significance of the additional 25 amino acid residues of the e14a2 BCR-ABL oncoprotein was extensively studied in the pre-imatinib era. However, the influence of the BCR-ABL transcript variant on the individual disease phenotype and outcome remained controversial and is still undefined in the imatinib era. Patients and methods: A total of 1,104 patients (median age 52 years, range 16–85, 40% female) expressing typical BCR-ABL transcript types (e13a2, n=447; e14a2, n=491; e13a2 and e14a2, n=166) were included in the randomized German CML study IV and treated with an imatinib based therapy consisting of imatinib 400 mg, imatinib 800 mg and combinations of standard dose imatinib with interferon alpha and low-dose cytarabine. The type of BCR-ABL transcript was defined by multiplex PCR. BCR-ABL expression was determined by quantitative RT-PCR and standardized according to the international scale (IS). Cytogenetic response was determined by conventional metaphase analyses. Response landmarks were defined according to European LeukemiaNet criteria, MR4 was defined as BCR-ABL IS ≤ 0.01% Results: No differences regarding age, sex and Euro risk were observed. A significant difference was observed comparing white blood cells (90,400/μl vs. 69,100/μl, p 〈 0.001) and platelets (293,000/μl vs. 424,000/μl, p 〈 0.001) at diagnosis (median, e13a2 vs. e14a2, respectively) indicating a distinct phenotype. No significant difference was observed regarding spleen size, basophils, eosinophils, blasts or adverse events under imatinib. Molecular response as determined by a transcript independent quantitative PCR assay was superior in e14a2 patients as compared to e13a2 patients (median time to major molecular response, MMR 1.5 years vs. 1.2 years, p 〈 0.001; median time to MR4 4.2 years vs. 2.5 years, p 〈 0.001). No difference was observed with regard to the achievement of a complete cytogenetic remission (CCyR). The superior molecular response rate of e14a2 patients did not translate into differences in progression free survival (PFS) or overall survival (OS). Conclusion: Distinct initial blood counts suggest a different phenotype of e13a2 and e14a2 driven CML. MMR and MR4 are achieved earlier by e14a2 patients whereas no difference was observed with regard to PFS and OS. Disclosures: Schnittger: Münchner Leukämie Labor: Equity Ownership. Haferlach:Münchner Leukämie Labor: Equity Ownership. German CML Study Group:Deutsche Krebshilfe: Research Funding; Novartis: Research Funding; BMBF: Research Funding; EU: Research Funding; Roche: Research Funding; Essex: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 783-783
    Abstract: Abstract 783FN2 Introduction: The advent of second generation tyrosine kinase inhibitors (TKI) in the front line treatment setting of chronic myeloid leukemia (CML) has tightened the evaluation of imatinib response. Early assessment of response markers might identify slow responders harboring a BCR-ABL positive clone with an inferior susceptibility to tyrosine kinase inhibition. This group of patients could benefit from an early dose escalation or a change of treatment to a second generation TKI thus avoiding the risk of disease progression. Therefore we sought to evaluate the impact of molecular and cytogenetic response levels after 3 months of imatinib treatment on the further course of disease. Patients and methods: A total of 1,340 patients (median age 52 years, range 16–88, 40% female) were included into the randomized German CML study IV and treated with an imatinib based therapy consisting of imatinib 400 mg/d (n=381), imatinib 800 mg/d (n=399) and combinations of standard dose imatinib with interferon alpha (n=402) and low-dose cytarabine (n=158). Median follow-up was 4.7 years (range 0–9). Molecular response after 3 months was assessed in 743 patients, cytogenetic response in 498 patients. The BCR-ABL expression was determined by quantitative RT-PCR and standardized according to the international scale (BCR-ABL IS). Only patients expressing typical BCR-ABL transcripts (b2a2, b3a2, b2a2 and b3a2) were considered. Cytogenetic response was determined by conventional metaphase analysis. Disease progression was defined by the incidence of accelerated phase, blastic phase or death from any reason. A landmark analysis was performed for progression free survival (PFS) and overall survival (OS). Results: Disease progression was observed in 149 patients (11.1%), 127 patients died (9.5%). After 3 months of treatment the median BCR-ABL IS was 2.6% (0-100), the median proportion of Philadelphia chromosome positive metaphases (Ph+) was 8% (0-100). The BCR-ABL landmarks of 1% and 10% after 3 months of imatinib both proved to discriminate significantly for PFS and OS: BCR-ABL IS 〈 1% (n=233) vs. ≥1% (n=486), p=0.041 for PFS, p=0.048 for OS; BCR-ABL IS 〈 10% (n=524) vs. ≥10% (n=195), p=0.004 for PFS and p=0.001 for OS. A stratification in 3 risk groups according to the achievement of a BCR-ABL IS of 〈 1%, 1–10% and 〉 10% after 3 months resulted in a significant difference between the poor risk group ( 〉 10%, n=195) and the intermediate risk group (1-10%, n=291): p=0.038 for PFS and p=0.012 for OS. The difference between the intermediate risk group and the good risk group ( 〈 1%, n=233) was not significant. The five year survival probability was 97%, 94% and 87% for the good, intermediate and poor risk group, respectively. Cytogenetic response landmarks after 3 months of imatinib were also predictive for PFS and OS: Ph+ ≤35% (n=362) vs. Ph+ 〉 35% (n=123), p=0.022 for PFS, p=0.043 for OS; Ph+ ≤65% (n=401) vs. Ph+ 〉 65% (n=84), p=0.004 for PFS and p=0.011 for OS. A 3 group stratification did not reach statistical significance. Conclusions: The achievement of molecular and cytogenetic response landmarks after 3 months of imatinib treatment is predictive for long term progression free and overall survival. At 3 months a BCR-ABL IS of 10% or more is associated with a 5-year overall survival of 87% suggesting an early change of treatment, whereas a BCR-ABL IS of 1% or less indicates a favorable 5-year overall survival of 97%. Disclosures: Schnittger: Münchner Leukämie Labor: Equity Ownership. Haferlach:Münchner Leukämie Labor: Equity Ownership. German CML Study Group:Deutsche Krebshilfe: Research Funding; Novartis: Research Funding; BMBF: Research Funding; EU: Research Funding; Roche: Research Funding; Essex: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 118, No. 26 ( 2011-12-22), p. 6760-6768
    Abstract: The prognostic relevance of additional cytogenetic findings at diagnosis of chronic myeloid leukemia (CML) is unclear. The impact of additional cytogenetic findings at diagnosis on time to complete cytogenetic (CCR) and major molecular remission (MMR) and progression-free (PFS) and overall survival (OS) was analyzed using data from 1151 Philadelphia chromosome–positive (Ph+) CML patients randomized to the German CML Study IV. At diagnosis, 1003 of 1151 patients (87%) had standard t(9;22)(q34;q11) only, 69 patients (6.0%) had variant t(v;22), and 79 (6.9%) additional cytogenetic aberrations (ACAs). Of these, 38 patients (3.3%) lacked the Y chromosome (−Y) and 41 patients (3.6%) had ACAs except −Y; 16 of these (1.4%) were major route (second Philadelphia [Ph] chromosome, trisomy 8, isochromosome 17q, or trisomy 19) and 25 minor route (all other) ACAs. After a median observation time of 5.3 years for patients with t(9;22), t(v;22), −Y, minor- and major-route ACAs, the 5-year PFS was 90%, 81%, 88%, 96%, and 50%, and the 5-year OS was 92%, 87%, 91%, 96%, and 53%, respectively. In patients with major-route ACAs, the times to CCR and MMR were longer and PFS and OS were shorter (P 〈 .001) than in patients with standard t(9;22). We conclude that major-route ACAs at diagnosis are associated with a negative impact on survival and signify progression to the accelerated phase and blast crisis.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 1487-1487
    Abstract: In acute leukemias, specific cytogenetic aberrations frequently correlate with myeloid or lymphoid phenotype of blasts and influence risk stratification. In chronic myeloid leukemia (CML) blast crisis (BC) it is not clear whether myeloid or lymphoid phenotype of blasts could be distinguished by specific chromosomal aberrations and have prognostic value. At diagnosis of CML, major route additional cytogenetic aberrations (ACA) like +8, i(17)(q10), +19, +der(22)t(9;22)(q34;q11) and minor route ACA like -X, del(1)(q21), del(5)(q11q14), +10,-21, resulting in an unbalanced karyotype have been described to adversely affect outcome. Patients with minor route ACA (for example reciprocal translocations other than the t(9;22)(q34;q11) (e.g. t(1;21), t(2;16), t(3;12), t(4;6), t(5;8), t(15;20)) resulting in a balanced karyotype did not show differences in overall survival and progression free survival compared to patients with the standard translocation, a variant translocation or the loss of the Y chromosome. Aim of this study was to analyze the impact of the phenotype (myeloid or lymphoid) on time to BC and on cytogenetic pattern. Methods 73 out of 1524 evaluable patients (4.8%) randomized until March 2012 to the German CML-Study IV (a 5-arm trial to optimize imatinib therapy) progressed to BC. Cytogenetic data of 23 out of 32 patients with myeloid BC and 14 out of 21 patients with lymphoid BC were available. In 15 patients, cytogenetic analysis were missing whereas 2 and 3 patients had megakaryoblastic and mixed phenotype, respectively and were not considered in this analysis. Karyotypes of lymphoid and myeloid BC were divided in major route and minor route ACA and balanced and unbalanced karyotypes. Categorical covariates were compared with Fisher’s exact test, while continuous covariates were compared with the Mann-Whitney-Wilcoxon test. Survival probabilities after BC were compared using the log-rank test. Results Out of 23 patients with myeloid BC, 14 (61%) had major route unbalanced ACA (n=10) or minor route unbalanced ACA (n=4), 4 had minor route balanced ACA and 5 patients had the translocation t(9;22)(q34;q11) or a variant translocation t(v;22) without ACA.13 out of 14 (93%) patients with lymphoid BC had major route unbalanced (n=10) or minor route unbalanced ACA (n=3) and 1 had the standard translocation t(9;22)(q34;q11) only. Between myeloid and lymphoid BC, the difference in the distribution of unbalanced ACA was apparent, but not statistically significant (p=0.06). The most frequently observed major route ACA was trisomy 8 in both groups (7 vs. 6), +der (22)t(9;22)(q34;q11) was more frequently found in myeloid than lymphoid BC (6 vs. 2), +19 was found in both phenotypes (3 vs. 3) whereas an isochromosome i(17)(q10) and an isoderivative chromosome ider(22)t(9;22)(q34;q11) were less frequent and found only in myeloid BC (1 for each vs 0 for each aberration). In lymphoid BC, 5 of 14 patients (36%) had ACA which involved chromosome 7 (del(7)(q22) and -7) whereas in myeloid BC only 2 patients (9%) had -7 (p=0.08). The balanced karyotype with a translocation t(3;21)(q26;q22) and the translocation t(9;11)(p22;q23) described in acute myeloid leukemia was observed in 3 patients with myeloid CML (2 and 1, respectively) and in none with lymphoid phenotype. No differences were observed in time to BC for patients with lymphoid vs. myeloid BC (p=0.31, median time: 409 vs. 453 days) and survival after onset of BC (p=0.9, median time: 544 vs. 284 days). Conclusions The proportion of unbalanced karyotypes was higher in lymphoid than in myeloid BC. In lymphoid BC alterations of chromosome 7 were more often present whereas +der(22)t(9;22)(q34;q11) was observed more frequently in myeloid BC. The reciprocal translocations t(3;21)(q26;q22) and t(9;11)(p22;q23) described in acute myeloid leukemias were only observed in myeloid BC. However these cytogenetic differences do not seem to alter the course of BC. Disclosures: Haferlach: MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Hehlmann:Novartis: Research Funding; BMS: Consultancy, Research Funding. Hochhaus:Ariad: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria; BMS: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding, Travel Other. Müller:Novartis: Honoraria, Research Funding, Speakers Bureau; BMS: Honoraria, Research Funding; Ariad: Honoraria. Saussele:Pfizer: Honoraria; BMS: Honoraria, Research Funding, Travel, Travel Other; Novartis: Honoraria, Research Funding, Travel Other.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Annals of Hematology, Springer Science and Business Media LLC, Vol. 94, No. 12 ( 2015-12), p. 2015-2024
    Type of Medium: Online Resource
    ISSN: 0939-5555 , 1432-0584
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 1458429-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...