GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 32, No. 5 ( 2014-02-10), p. 415-423
    Abstract: Deep molecular response (MR 4.5 ) defines a subgroup of patients with chronic myeloid leukemia (CML) who may stay in unmaintained remission after treatment discontinuation. It is unclear how many patients achieve MR 4.5 under different treatment modalities and whether MR 4.5 predicts survival. Patients and Methods Patients from the randomized CML-Study IV were analyzed for confirmed MR 4.5 which was defined as ≥ 4.5 log reduction of BCR-ABL on the international scale (IS) and determined by reverse transcriptase polymerase chain reaction in two consecutive analyses. Landmark analyses were performed to assess the impact of MR 4.5 on survival. Results Of 1,551 randomly assigned patients, 1,524 were assessable. After a median observation time of 67.5 months, 5-year overall survival (OS) was 90%, 5-year progression-free-survival was 87.5%, and 8-year OS was 86%. The cumulative incidence of MR 4.5 after 9 years was 70% (median, 4.9 years); confirmed MR 4.5 was 54%. MR 4.5 was reached more quickly with optimized high-dose imatinib than with imatinib 400 mg/day (P = .016). Independent of treatment approach, confirmed MR 4.5 at 4 years predicted significantly higher survival probabilities than 0.1% to 1% IS, which corresponds to complete cytogenetic remission (8-year OS, 92% v 83%; P = .047). High-dose imatinib and early major molecular remission predicted MR 4.5 . No patient with confirmed MR 4.5 has experienced progression. Conclusion MR 4.5 is a new molecular predictor of long-term outcome, is reached by a majority of patients treated with imatinib, and is achieved more quickly with optimized high-dose imatinib, which may provide an improved therapeutic basis for treatment discontinuation in CML.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2014
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 2567-2567
    Abstract: Allogeneic HSCT has been established as the only curative treatment option for patients with chronic myeloid leukemia (CML). However, after the advent of tyrosine kinase inhibitors (TKI) the proportion of transplanted patients has decreased dramatically. After imatinib failure, most patients receive second or third line therapy with alternative TKIs. In an important minority of patients, SCT is performed too late as more patients are transplanted after disease progression to accelerated phase or blast crisis than in first chronic phase (CP, Saussele et al. BMT 2012). A possible reason is the uncertainty on long-term outcome after SC T in the imatinib-era as reports are scarce and accurate comparative data on the impact of salvage TKI therapy vs allogeneic transplantation are missing. We therefore investigated the outcome of transplanted patients within the CML study IV. Preliminary data were published (Saussele et al. BLOOD 2010). Here, we sought to re-evaluate the outcome of these patients with a longer follow-up. In July 2002, the German CML-Study Group activated a prospective randomized trial comparing different imatinib based strategies in CP CML. Elective early HSCT was considered for patients with EBMT score 0–1 for those with high disease risk, and after imatinib failure. By the end of March 2012, 1551 patients were randomized. In 2008, HSCT was documented in 84 patients. One patient was not evaluable any more due to withdrawal of consent. 52 patients were male (65%), 23 high risk patients (28%) according to the Euro CML score. Median age at diagnosis was 37 years (range, 16-62), median time to HSCT was 12.6 months (range, 3.5-54). EBMT score was 0-1 in 8 (10%), 2 in 10 (12%), 3-4 in 44 (55%), and 〉 =5 in 18 patients (23%), three patients were missing. Median follow-up after HSCT was 86.9 months (range, 0.3-122). Based on the indication for HSCT three groups are defined: 1) early HSCT, n= 19 (23%; low EBMT score (n=9), high risk patients (n=7), patient request (n=3); 2) HSCT after imatinib failure or intolerance in first CP (n=36 patients, 43%), and 3) HSCT in second CP or higher, accelerated phase or blast crisis (n=28 patients, 34%). 26 patients died, 13 deaths were transplant related, 9 CML related 4 either unrelated or unknown. Overall survival rate at 6 years after HSCT was 89% (95%-confidence interval (CI): 72-99%) for group 1, 80% (95%-CI: 66-91%) for group 2, and 49% (31-68%) for group 3. A matched pair analysis could be performed for 53 transplanted patients of group 1 and 2. To each of the transplanted patients two imatinib-treated patients could be matched with regard to age, sex, risk profile, disease phase, and interval to transplantation. Median follow up of this population was 87 months. Overall survival after 8 years was 83% (95%-CI: 71-92%) for transplanted and 89% (95%-CI: 82-94%) for imatinib treated patients without any statistical difference. Data from this update with a longer follow-up support the role of HSCT as an attractive and important salvage therapy for CML patients with imatinib failure or intolerance. In a matched pair comparison of transplanted and non-transplanted patients, we did not find significant differences. Disclosures Saussele: Novartis: Honoraria, Research Funding, Travel Other; Bristol-Myers Squibb: Honoraria, Research Funding, Travel, Travel Other; Pfizer: Honoraria, Travel, Travel Other. Müller:Novartis: Honoraria, Research Funding; Bristol Myers Squibb: Honoraria, Research Funding; ARIAD: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Schnittger:MLL Munich Leukemia Laboratory: Equity Ownership. Hanfstein:Novartis: Research Funding; Bristol-Myers Squibb: Honoraria. Hochhaus:Novartis: Consultancy, Honoraria, Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria; ARIAD: Honoraria, Research Funding; Pfizer: Consultancy, Research Funding. Pfirrmann:Novartis: Consultancy; Bristol-Myers Squibb: Honoraria. Hehlmann:Bristol-Myers Squibb: Research Funding; Novartis: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 3996-3996
    Abstract: Current evidence indicates that acquired genetic instability in chronic myeloid leukemia (CML) as a consequence of the balanced reciprocal translocation t(9;22)(q34;q11) or the variant translocation t(v;22) and the resulting BCR-ABL fusion causes the continuous acquisition of additional chromosomal aberrations (ACA) and mutations and thereby progression to accelerated phase and blast crisis (BC). At least 10% of patients in chronic phase (CP) CML show ACA already at diagnosis and more than 80% of patients acquire ACA during the transformation process into BC. Therefore, alterations at diagnosis as well as acquisition of chromosomal changes during treatment are considered as a poor prognostic factor. Differences in progression-free survival (PFS) and overall survival (OS) have been detected depending on the type of ACA. Patients with major route ACA (+8, i(17)(q10), +19, +der(22)t(9;22)(q34;q11)) and with other alterations like -X, del(1)(q21), del(5)(q11q14), +10, -21 at diagnosis resulting in an unbalanced karyotype have a worse outcome. Patients with minor route ACA (for example reciprocal translocations other than the t(9;22)(q34;q11) (e.g. t(1;21), t(2;16), t(3;12), t(4;6), t(5;8), t(15;20)) resulting in a balanced karyotype show no differences in OS and PFS compared to patients with the standard translocation, a variant translocation or the loss of the Y chromosome (Fabarius et al., Blood 2011). Here we compare the type of chromosomal changes (i.e. balanced vs. unbalanced karyotypes) during the course of the disease from CP to BC aiming to provide a valid parameter for future risk stratification. Patients and Methods Clinical and cytogenetic data available from 1,346 out of 1,524 patients at diagnosis (40% females vs. 60% males; median age 53 years (range, 16-88)) with Philadelphia and BCR-ABL positive CP CML included until March 2012 in the German CML-Study IV (a randomized 5-arm trial to optimize imatinib therapy) were investigated. ACA were comparatively analyzed in CP and in BC. Results At diagnosis 1,174/1,346 patients (87%) had the standard t(9;22)(q34;q11) only and 75 patients (6%) had a variant t(v;22). Ninety-seven patients (7%) had additional cytogenetic aberrations. Of these, 44 patients (3%) lacked the Y chromosome (-Y) and 53 patients (4%) had ACA. Regarding the patients with ACA thirty-six of the 53 patients (68%) had an unbalanced karyotype and 17/53 patients (32%) a balanced karyotype. During the course of the disease 73 patients (out of 1,524 patients) developed a BC during the observation time (5%). Cytogenetic data were available in 52 patients with BC (21 patients with BC had no cytogenetic analysis). Three patients had a normal male or female karyotype after stem cell transplantation. Nine patients showed the translocation t(9;22)(q34;q11) or a variant translocation t(v;22) (six and three patients, respectively) only and in 40 patients ACA could be observed in BC (40/49 (82%)). Out of these 40 patients with ACA, 90% showed an unbalanced karyotype whereas only 10% of patients had a balanced karyotype. No male patient in BC showed the loss of the Y chromosome pointing to a minor effect of this numerical alteration on disease progression. Conclusion We conclude that patients with CML and unbalanced karyotype at diagnosis are under higher risk to develop CML BC compared to patients with balanced karyotypes or compared to patients without ACA. In BC, 90% of CML patients showed unbalanced karyotypes (only 68% of CML patients at diagnosis have unbalanced karyotypes) supporting the hypothesis that the imbalance of chromosomal material is a hallmark of disease progression, representing the natural history of the disease from CP to BC and indicating therefore a strong prognostic impact. Consequently, different therapeutic options (such as intensive therapy or stem cell transplantation) should be considered for patients with unbalanced karyotypes in CP CML at diagnosis. Disclosures: Haferlach: MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Hehlmann:BMS: Consultancy, Research Funding; Novartis: Research Funding. Hochhaus:Novartis: Consultancy, Honoraria, Research Funding, travel Other; BMS: Consultancy, Honoraria, Research Funding; Pfizer : Consultancy, Honoraria; Ariad : Consultancy, Honoraria. Müller:Ariad: Honoraria; BMS: Honoraria, Research Funding; Novartis: Honoraria, Research Funding, Speakers Bureau. Saussele:Pfizer: Honoraria; BMS: Honoraria, Research Funding, Travel, Travel Other; Novartis: Honoraria, Research Funding, Travel Other.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 1581-1581
    Abstract: During the course of chronic myeloid leukemia (CML) progression to blast crisis (BC) is thought to be caused by genetic instability such as cytogenetic aberrations in addition to the translocation t(9;22)(q34;q11). We have shown previously that major route ACA indicate an unfavorable outcome (Fabarius et al., Blood 2011). We now investigate whether there is a correlation in time between appearance of major route ACA and increase in blast count. Methods: Cytogenetic data and blast count in the peripheral blood were available from 1,290 CML patients recruited to the German CML-studies III (621 patients) and IIIa (669 patients) from January 1995 to January 2004. Treatments were interferon-alpha-based or related allogeneic stem cell transplantation (HSCT). Presence of ACA and major route ACA was considered as a time-dependent covariate. Multivariate proportional hazards models were estimated taking Euro CML score, study III vs. IIIa and stem cell transplantability into account. Cumulative incidences of blast increases were calculated starting at the date of the first ACA or major route ACA, respectively, regarding death as a competing risk. Patients were censored at the date of HSCT with an unrelated donor. Results: 1,287 patients were evaluable with median observation times of 13 and 12 years and a 10-year survival of 48% and 61% in CML studies III and IIIa, respectively. 258 patients progressed to BC with a cumulative 10-year incidence of 20%. 195 patients displayed ACA during the course of disease. 45 patients (15.7%) showed ACA already at diagnosis. 44 patients showed unbalanced minor route, 29 balanced minor route aberrations, 23 -Y. 109 patients showed major route aberrations including 10 with other prior ACA. In a multivariate analysis on 1,257 patients, patients with ACA had a hazard ratio (HR) for a blast increase of between 2.0-2.2 (p 〈 0.001) for blast increases to ≥1%, ≥5%, ≥10%, ≥15%, ≥ 20% and ≥30% compared with patients without ACA (Table). When the same model was performed for major route ACA only at any time during disease, HRs of 2.2-2.7 (p 〈 0.001) were found. For ACA without major route ACA HRs were 1.6-2.1 (p 〈 0.001). In the multivariate analyses of major route ACA vs. no major route ACA a blast increase of 1-5% after diagnosis of major route ACA seems already indicative of progression. 5 years after the diagnosis of any ACA the cumulative incidence for a blast increase was 30% (95%- confidence interval (CI): 23-38%), of a major route ACA 40% (95%- CI: 28-49%). The 6-year probability of death without blast increase was 10%. 14 additional patients received an unrelated transplant of which 6 died. We conclude that ACA, particularly major route ACA, precede an increase of blasts. Major route ACA have to be considered as a prognostic indicator for disease progression at any time. Table 1. Blast increase to HR (univariate): ACA vs. no ACA HR(multivariate)*: ACA vs. no ACA HR (univariate): major route ACA vs. no major route ACA HR (multivariate)*: major route ACA vs. no major route ACA ≥30% 2.409 2.139 2.646 2.203 ≥20% 2.413 2.144 2.656 2.211 ≥15% 2.415 2.161 2.868 2.426 ≥10% 2.416 2.160 2.799 2.357 ≥5% 2.286 2.047 2.719 2.278 ≥1% 2.209 1.999 3.171 2.684 *adjusted to Euro-Score, study (III vs. IIIa) and transplantability Disclosures Saussele: ARIAD: Honoraria; BMS: Honoraria, Other: Travel grant, Research Funding; Pfizer: Honoraria, Other: Travel grant; Novartis Pharma: Honoraria, Other: Travel grant, Research Funding. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Scheid:Janssen-Cilag: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Baerlocher:Geron Corporation: Research Funding; Novartis: Research Funding. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Müller:BMS: Consultancy, Honoraria, Research Funding; Ariad: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding. Hochhaus:ARIAD: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding. Pfirrmann:BMS: Consultancy, Honoraria; Novartis Pharma: Consultancy, Honoraria. Baccarani:Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; NOVARTIS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; ARIAD Pharmaceuticals, Inc.: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; PFIZER: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Hehlmann:BMS: Consultancy; Novartis Pharma: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 1487-1487
    Abstract: In acute leukemias, specific cytogenetic aberrations frequently correlate with myeloid or lymphoid phenotype of blasts and influence risk stratification. In chronic myeloid leukemia (CML) blast crisis (BC) it is not clear whether myeloid or lymphoid phenotype of blasts could be distinguished by specific chromosomal aberrations and have prognostic value. At diagnosis of CML, major route additional cytogenetic aberrations (ACA) like +8, i(17)(q10), +19, +der(22)t(9;22)(q34;q11) and minor route ACA like -X, del(1)(q21), del(5)(q11q14), +10,-21, resulting in an unbalanced karyotype have been described to adversely affect outcome. Patients with minor route ACA (for example reciprocal translocations other than the t(9;22)(q34;q11) (e.g. t(1;21), t(2;16), t(3;12), t(4;6), t(5;8), t(15;20)) resulting in a balanced karyotype did not show differences in overall survival and progression free survival compared to patients with the standard translocation, a variant translocation or the loss of the Y chromosome. Aim of this study was to analyze the impact of the phenotype (myeloid or lymphoid) on time to BC and on cytogenetic pattern. Methods 73 out of 1524 evaluable patients (4.8%) randomized until March 2012 to the German CML-Study IV (a 5-arm trial to optimize imatinib therapy) progressed to BC. Cytogenetic data of 23 out of 32 patients with myeloid BC and 14 out of 21 patients with lymphoid BC were available. In 15 patients, cytogenetic analysis were missing whereas 2 and 3 patients had megakaryoblastic and mixed phenotype, respectively and were not considered in this analysis. Karyotypes of lymphoid and myeloid BC were divided in major route and minor route ACA and balanced and unbalanced karyotypes. Categorical covariates were compared with Fisher’s exact test, while continuous covariates were compared with the Mann-Whitney-Wilcoxon test. Survival probabilities after BC were compared using the log-rank test. Results Out of 23 patients with myeloid BC, 14 (61%) had major route unbalanced ACA (n=10) or minor route unbalanced ACA (n=4), 4 had minor route balanced ACA and 5 patients had the translocation t(9;22)(q34;q11) or a variant translocation t(v;22) without ACA.13 out of 14 (93%) patients with lymphoid BC had major route unbalanced (n=10) or minor route unbalanced ACA (n=3) and 1 had the standard translocation t(9;22)(q34;q11) only. Between myeloid and lymphoid BC, the difference in the distribution of unbalanced ACA was apparent, but not statistically significant (p=0.06). The most frequently observed major route ACA was trisomy 8 in both groups (7 vs. 6), +der (22)t(9;22)(q34;q11) was more frequently found in myeloid than lymphoid BC (6 vs. 2), +19 was found in both phenotypes (3 vs. 3) whereas an isochromosome i(17)(q10) and an isoderivative chromosome ider(22)t(9;22)(q34;q11) were less frequent and found only in myeloid BC (1 for each vs 0 for each aberration). In lymphoid BC, 5 of 14 patients (36%) had ACA which involved chromosome 7 (del(7)(q22) and -7) whereas in myeloid BC only 2 patients (9%) had -7 (p=0.08). The balanced karyotype with a translocation t(3;21)(q26;q22) and the translocation t(9;11)(p22;q23) described in acute myeloid leukemia was observed in 3 patients with myeloid CML (2 and 1, respectively) and in none with lymphoid phenotype. No differences were observed in time to BC for patients with lymphoid vs. myeloid BC (p=0.31, median time: 409 vs. 453 days) and survival after onset of BC (p=0.9, median time: 544 vs. 284 days). Conclusions The proportion of unbalanced karyotypes was higher in lymphoid than in myeloid BC. In lymphoid BC alterations of chromosome 7 were more often present whereas +der(22)t(9;22)(q34;q11) was observed more frequently in myeloid BC. The reciprocal translocations t(3;21)(q26;q22) and t(9;11)(p22;q23) described in acute myeloid leukemias were only observed in myeloid BC. However these cytogenetic differences do not seem to alter the course of BC. Disclosures: Haferlach: MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Hehlmann:Novartis: Research Funding; BMS: Consultancy, Research Funding. Hochhaus:Ariad: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria; BMS: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding, Travel Other. Müller:Novartis: Honoraria, Research Funding, Speakers Bureau; BMS: Honoraria, Research Funding; Ariad: Honoraria. Saussele:Pfizer: Honoraria; BMS: Honoraria, Research Funding, Travel, Travel Other; Novartis: Honoraria, Research Funding, Travel Other.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Annals of Hematology, Springer Science and Business Media LLC, Vol. 94, No. 12 ( 2015-12), p. 2015-2024
    Type of Medium: Online Resource
    ISSN: 0939-5555 , 1432-0584
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 1458429-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 104, No. 5 ( 2019-05), p. 955-962
    Type of Medium: Online Resource
    ISSN: 0390-6078 , 1592-8721
    Language: English
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2019
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 115, No. 10 ( 2010-03-11), p. 1880-1885
    Abstract: The role of allogeneic stem cell transplantation in chronic myeloid leukemia is being reevaluated. Whereas drug treatment has been shown to be superior in first-line treatment, data on allogeneic hematopoietic stem cell transplantation (allo SCT) as second-line therapy after imatinib failure are scarce. Using an interim safety analysis of the randomized German CML Study IV designed to optimize imatinib therapy by combination, dose escalation, and transplantation, we here report on 84 patients who underwent consecutive transplantation according to predefined criteria (low European Group for Blood and Marrow Transplantation [EBMT] score, imatinib failure, and advanced disease). Three-year survival after transplantation of 56 patients in chronic phase was 91% (median follow-up: 30 months). Transplantation-related mortality was 8%. In a matched pair comparison of patients who received a transplant and those who did not, survival was not different. Three-year survival after transplantation of 28 patients in advanced phase was 59%. Eighty-eight percent of patients who received a transplant achieved complete molecular remissions. We conclude that allo SCT could become the preferred second-line option after imatinib failure for suitable patients with a donor. The study is registered at the National Institutes of Health, http://clinicaltrials.gov: NCT00055874.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 118, No. 26 ( 2011-12-22), p. 6760-6768
    Abstract: The prognostic relevance of additional cytogenetic findings at diagnosis of chronic myeloid leukemia (CML) is unclear. The impact of additional cytogenetic findings at diagnosis on time to complete cytogenetic (CCR) and major molecular remission (MMR) and progression-free (PFS) and overall survival (OS) was analyzed using data from 1151 Philadelphia chromosome–positive (Ph+) CML patients randomized to the German CML Study IV. At diagnosis, 1003 of 1151 patients (87%) had standard t(9;22)(q34;q11) only, 69 patients (6.0%) had variant t(v;22), and 79 (6.9%) additional cytogenetic aberrations (ACAs). Of these, 38 patients (3.3%) lacked the Y chromosome (−Y) and 41 patients (3.6%) had ACAs except −Y; 16 of these (1.4%) were major route (second Philadelphia [Ph] chromosome, trisomy 8, isochromosome 17q, or trisomy 19) and 25 minor route (all other) ACAs. After a median observation time of 5.3 years for patients with t(9;22), t(v;22), −Y, minor- and major-route ACAs, the 5-year PFS was 90%, 81%, 88%, 96%, and 50%, and the 5-year OS was 92%, 87%, 91%, 96%, and 53%, respectively. In patients with major-route ACAs, the times to CCR and MMR were longer and PFS and OS were shorter (P 〈 .001) than in patients with standard t(9;22). We conclude that major-route ACAs at diagnosis are associated with a negative impact on survival and signify progression to the accelerated phase and blast crisis.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...