GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (17)
  • Cowan, Tim  (17)
Material
Publisher
  • American Meteorological Society  (17)
Language
Subjects(RVK)
  • 11
    Online Resource
    Online Resource
    American Meteorological Society ; 2011
    In:  Journal of Climate Vol. 24, No. 23 ( 2011-12-01), p. 6035-6053
    In: Journal of Climate, American Meteorological Society, Vol. 24, No. 23 ( 2011-12-01), p. 6035-6053
    Abstract: In recent decades, southeast Australia (SEA) has experienced a severe rainfall decline, with a maximum reduction in the austral autumn season. The cause(s) of this decline remain unclear. This study examines the interaction between remote large-scale climate modes and an atmospheric phenomenon known as the subtropical ridge (STR) at the local scale. A focus is placed on the utility of using the STR as a bridge for understanding how these remote climate drivers influence SEA rainfall through a response in local atmospheric conditions. Using observational data since 1979, it is found that a strong seasonality exists in the impact of the STR on SEA rainfall. In austral autumn, because SEA rainfall is poorly correlated with the STR intensity (STRI) and STR position (STRP) on an interannual basis, it follows that most of the autumn rainfall reduction cannot be explained by the STRI changes in this season. There is also no clear relationship between the autumn STR and known remote modes of variability. Reductions in SEA rainfall have occurred in the austral winter and spring seasons; however, neither is significant. During winter, although El Niño–Southern Oscillation (ENSO) has little impact on the STR, there is a significant influence from the Indian Ocean dipole (IOD) and the southern annular mode (SAM). The IOD impact is conducted through equivalent-barotropic Rossby wave trains stemming from the eastern Indian Ocean in response to the IOD-induced anomalous convection and divergence. These wave trains modify the intensity and position of the ridge over SEA. The impact from the SAM is similarly projected onto the STRI and STRP. The STR trend accounts for the entire observed decline in SEA winter rainfall, 80% of which is contributed by the upward trend of the IOD; the SAM exhibits virtually no trend over the 30-yr period in this season. In spring, SEA rainfall shows strong interannual variability and is well correlated with the STRI; the ridge itself is influenced by the IOD and ENSO but not by the SAM. The Indian Ocean is a major pathway for ENSO’s impact on SEA rainfall in this season, which is conducted by two wave trains emanating from the east and west poles of the IOD. These wave train patterns share an anomalously high surface pressure center south of Australia, which does not align with the STR over SEA. As such, only a small portion of the STRI variance is accounted for by fluctuations in ENSO and the IOD. Long-term changes in the STRI account for about 90% of the observed decline in SEA spring rainfall, all of which are due to a recent increased frequency in the number of positive IOD events (upward IOD trend); ENSO shows no long-term trend over the 30-yr period. In summary, variability and change in winter and spring rainfall across SEA can be understood through the impact of remote climate modes, such as ENSO, the IOD, and the SAM, on the STR. This approach, however, offers no utility for understanding what drives the long-term SEA autumn rainfall decline, the dynamics of which remain elusive.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Journal of Climate Vol. 26, No. 21 ( 2013-11-01), p. 8341-8356
    In: Journal of Climate, American Meteorological Society, Vol. 26, No. 21 ( 2013-11-01), p. 8341-8356
    Abstract: In recent decades, Southern Hemisphere midlatitude regions such as southern Africa, southeastern Australia, and southern Chile have experienced a reduction in austral autumn precipitation; the cause of which is poorly understood. This study focuses on the ability of global climate models that form part of the Coupled Model Intercomparison Project phase 5 to simulate these trends, their relationship with extratropical and subtropical processes, and implications for future precipitation changes. Models underestimate both the historical autumn poleward expansion of the subtropical dry zone and the positive southern annular mode (SAM) trend. The multimodel ensemble (MME) is also unable to capture the spatial pattern of observed precipitation trends across semiarid midlatitude regions. However, in temperate regions that are located farther poleward such as southern Chile, the MME simulates observed precipitation declines. The MME shows a strong consensus in twenty-first-century declines in autumn precipitation across southern Chile in both the medium–low and high representative concentration pathway (RCP) scenarios and across southern Africa in the high RCP scenario, but little change across southeastern Australia. Projecting a strong positive SAM trend and continued subtropical dry-zone expansion, the models converge on large SAM and dry-zone-expansion-induced precipitation declines across southern midlatitudes. In these regions, the strength of future precipitation trends is proportional to the strength of modeled trends in these phenomena, suggesting that unabated greenhouse gas–induced climate change will have a large impact on austral autumn precipitation in such midlatitude regions.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of Climate Vol. 34, No. 6 ( 2021-03), p. 2205-2218
    In: Journal of Climate, American Meteorological Society, Vol. 34, No. 6 ( 2021-03), p. 2205-2218
    Abstract: El Niño–Southern Oscillation (ENSO) is the dominant mode of interannual climate fluctuations with wide-ranging socioeconomic and environmental impacts. Understanding the eastern Pacific (EP) and central Pacific (CP) El Niño response to a warmer climate is paramount, yet the role of internal climate variability in modulating their response is not clear. Using large ensembles, we find that internal variability generates a spread in the standard deviation and skewness of these two El Niño types that is similar to the spread of 17 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) that realistically simulate ENSO diversity. Based on 40 Community Earth System Model Large Ensemble (CESM-LE) and 99 Max Planck Institute for Meteorology Grand Ensemble (MPI-GE) members, unforced variability can explain more than 90% of the historical EP and CP El Niño standard deviation and all of the ENSO skewness spread in the 17 CMIP5 models. Both CESM-LE and the selected CMIP5 models show increased EP and CP El Niño variability in a warmer climate, driven by a stronger mean vertical temperature gradient in the upper ocean and faster surface warming of the eastern equatorial Pacific. However, MPI-GE shows no agreement in EP or CP standard deviation change. This is due to weaker sensitivity to the warming signal, such that when the eastern equatorial Pacific surface warming is faster, the change in upper ocean vertical temperature gradient tends to be weaker. This highlights that individual models produce a different ENSO response in a warmer climate, and that considerable uncertainty within the CMIP5 ensemble may be caused by internal climate variability.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Online Resource
    Online Resource
    American Meteorological Society ; 2010
    In:  Journal of Climate Vol. 23, No. 1 ( 2010-01-01), p. 197-206
    In: Journal of Climate, American Meteorological Society, Vol. 23, No. 1 ( 2010-01-01), p. 197-206
    Abstract: Significant warming has occurred across many of the world’s oceans throughout the latter part of the twentieth-century. The increase in the oceanic heat content displays a considerable spatial difference, with a maximum in the 35°–50°S midlatitude band. The relative importance of wind and surface heat flux changes in driving the warming pattern is the subject of much debate. Using wind, oceanic temperature, and heat flux outputs from twentieth-century multimodel experiments, conducted for the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC), the authors were able to reproduce the fast, deep warming in the midlatitude band; however, this warming is unable to be accounted for by local heat flux changes. The associated vertical structure and zonal distribution are consistent with a Sverdrup-type response to poleward-strengthening winds, with a poleward shift of the Southern Hemisphere (SH) supergyre and the Antarctic Circumpolar Current. However, the shift is not adiabatic and involves a net oceanic heat content increase over the SH, which can only be forced by changes in the net surface heat flux. Counterintuitively, the heat required for the fast, deep warming is largely derived from the surface heat fluxes south of 50°S, where the surface flux into the ocean is far larger than that of the midlatitude band. The heat south of 50°S is advected northward by an enhanced northward Ekman transport induced by the poleward-strengthening winds and penetrates northward and downward along the outcropping isopycnals to a depth of over 1000 m. However, because none of the models resolve eddies and given that eddy fluxes could offset the increase in the northward Ekman transport, the heat source for the fast, deep warming in the midlatitude band could be rather different in the real world.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2010
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Journal of Climate Vol. 26, No. 1 ( 2013-01-01), p. 189-205
    In: Journal of Climate, American Meteorological Society, Vol. 26, No. 1 ( 2013-01-01), p. 189-205
    Abstract: Since the 1950s annual rainfall over southeastern Australia (SEA) has decreased considerably with a maximum decline in the austral autumn season (March–May), particularly from 1980 onward. The understanding of SEA autumn rainfall variability, the causes, and associated mechanisms for the autumn reduction remain elusive. As such, a new plausible mechanism for SEA autumn rainfall variability is described, and the dynamics for the reduction are hypothesized. First, there is no recent coherence between SEA autumn rainfall and the southern annular mode, discounting it as a possible driver of the autumn rainfall reduction. Second, weak trends in the subtropical ridge intensity cannot explain the recent autumn rainfall reduction across SEA, even though a significant relationship exists between the ridge and rainfall in April and May. With a collapse in the relationship between the autumn subtropical ridge intensity and position in recent decades, a strengthening in the influence of the postmonsoonal winds from north of Australia has emerged, as evident by a strong post-1980 coherence with SEA mean sea level pressure and rainfall. From mid to late autumn, there has been a replacement of a relative wet climate in SEA with a drier climate from northern latitudes, representing a climate shift that has contributed to the rainfall reduction. The maximum baroclinicity, as indicated by Eady growth rates, has shifted poleward. An associated poleward shift of the dominant process controlling SEA autumn rainfall has further enhanced the reduction, particularly across southern SEA. This observed change over the past few decades is consistent with a poleward shift of the ocean and atmosphere circulation.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Online Resource
    Online Resource
    American Meteorological Society ; 2007
    In:  Journal of Climate Vol. 20, No. 4 ( 2007-02-15), p. 681-693
    In: Journal of Climate, American Meteorological Society, Vol. 20, No. 4 ( 2007-02-15), p. 681-693
    Abstract: Simulations by the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models on the Southern Hemisphere (SH) circulation are assessed over the period 1950–99, focusing on the seasonality of the trend and the level of its congruency with the southern annular mode (SAM) in terms of surface zonal wind stress. It is found that, as a group, the models realistically produce the seasonality of the trend, which is strongest in the SH summer season, December–February (DJF). The modeled DJF trend is principally congruent with the modeled SAM trend, as in observations. The majority of models produce a statistically significant positive trend, with decreasing westerlies in the midlatitudes and increasing westerlies in the high latitudes. The trend pattern from an all-experiment mean achieves highest correlation with that from the National Centers for Environmental Prediction (NCEP) data. A total of 48 out of the 71 experiments were run with ozone-depletion forcing, which offers an opportunity to assess the importance of ozone depletion in driving the late-twentieth-century trends. The AR4 model ensemble that contains an ozone-depletion forcing produces an averaged trend that is comparable to the trend from the NCEP outputs corrected by station-based observations. The trend is largely generated after the mid-1970s. Without ozone depletion the trend is less than half of that in the corrected NCEP, although the errors in the observed trend are large. The impact on oceanic circulation is inferred from wind stress curl in the group with ozone-depletion forcing. The result shows an intensification of the southern midlatitude supergyre circulation, including a strengthening East Australian Current flowing through the Tasman Sea. Thus, ozone depletion also plays an important role in the subtropical gyre circulation change over the past decades.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2007
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Online Resource
    Online Resource
    American Meteorological Society ; 2011
    In:  Journal of Climate Vol. 24, No. 10 ( 2011-05-15), p. 2556-2564
    In: Journal of Climate, American Meteorological Society, Vol. 24, No. 10 ( 2011-05-15), p. 2556-2564
    Abstract: Severe rainfall deficiencies have plagued southern and eastern Australian regions over the past decades, where the long-term rainfall is projected to decrease. By contrast, there has been an increase over northwest Australia (NWA) in austral summer, which, if it continues, could be an important future water resource. If increasing anthropogenic aerosols contribute to the observed increase in summer rainfall, then, as anthropogenic aerosols are projected to decrease, what will the likely impact over NWA be? This study uses output from 24 climate models submitted to phase 3 of the Coupled Model Intercomparison Project (CMIP3) with a total of 75 experiments to provide a multimodel perspective. The authors find that none of the ensemble averages, either with both the direct and indirect anthropogenic aerosol effect (10 models, 32 experiments) or with the direct effect only (14 models, 43 experiments), simulate the observed NWA rainfall increase. Given this, it follows that a projected rainfall reduction is not due to a projected decline in future aerosol concentrations. The authors show that the projected NWA rainfall reduction is associated with an unrealistic and overly strong NWA rainfall teleconnection with the El Niño–Southern Oscillation (ENSO). The unrealistic teleconnection is primarily caused by a model equatorial Pacific cold tongue that extends too far into the western Pacific, with the ascending branch of the Walker circulation situated too far west, exerting an influence on rainfall over NWA rather than over northeast Australia. Models with a greater present-day ENSO amplitude produce a greater reduction in the Walker circulation and hence a greater reduction in NWA rainfall in a warming climate. Hence, the cold bias and its impact represent a source of uncertainty for climate projections.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...