GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Environmental Science, Frontiers Media SA, Vol. 10 ( 2022-10-5)
    Abstract: Space-based Earth observation (EO), in the form of long-term climate data records, has been crucial in the monitoring and quantification of slow changes in the climate system—from accumulating greenhouse gases (GHGs) in the atmosphere, increasing surface temperatures, and melting sea-ice, glaciers and ice sheets, to rising sea-level. In addition to documenting a changing climate, EO is needed for effective policy making, implementation and monitoring, and ultimately to measure progress and achievements towards the overarching goals of the United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement to combat climate change. The best approach for translating EO into actionable information for policymakers and other stakeholders is, however, far from clear. For example, climate change is now self-evident through increasingly intense and frequent extreme events—heatwaves, droughts, wildfires, and flooding—costing human lives and significant economic damage, even though single events do not constitute “climate”. EO can capture and visualize the impacts of such events in single images, and thus help quantify and ultimately manage them within the framework of the UNFCCC Paris Agreement, both at the national level (via the Enhanced Transparency Framework) and global level (via the Global Stocktake). We present a transdisciplinary perspective, across policy and science, and also theory and practice, that sheds light on the potential of EO to inform mitigation, including sinks and reservoirs of greenhouse gases, and adaptation, including loss and damage. Yet to be successful with this new mandate, EO science must undergo a radical overhaul: it must become more user-oriented, collaborative, and transdisciplinary; span the range from fiducial to contextual data; and embrace new technologies for data analysis (e.g., artificial intelligence). Only this will allow the creation of the knowledge base and actionable climate information needed to guide the UNFCCC Paris Agreement to a just and equitable success.
    Type of Medium: Online Resource
    ISSN: 2296-665X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2741535-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 101, No. 11 ( 2020-11-01), p. E1948-E1971
    Abstract: Climate data records (CDRs) of essential climate variables (ECVs) as defined by the Global Climate Observing System (GCOS) derived from satellite instruments help to characterize the main components of the Earth system, to identify the state and evolution of its processes, and to constrain the budgets of key cycles of water, carbon, and energy. The Climate Change Initiative (CCI) of the European Space Agency (ESA) coordinates the derivation of CDRs for 21 GCOS ECVs. The combined use of multiple ECVs for Earth system science applications requires consistency between and across their respective CDRs. As a comprehensive definition for multi-ECV consistency is missing so far, this study proposes defining consistency on three levels: 1) consistency in format and metadata to facilitate their synergetic use (technical level); 2) consistency in assumptions and auxiliary datasets to minimize incompatibilities among datasets (retrieval level); and 3) consistency between combined or multiple CDRs within their estimated uncertainties or physical constraints (scientific level). Analyzing consistency between CDRs of multiple quantities is a challenging task and requires coordination between different observational communities, which is facilitated by the CCI program. The interdependencies of the satellite-based CDRs derived within the CCI program are analyzed to identify where consistency considerations are most important. The study also summarizes measures taken in CCI to ensure consistency on the technical level, and develops a concept for assessing consistency on the retrieval and scientific levels in the light of underlying physical knowledge. Finally, this study presents the current status of consistency between the CCI CDRs and future efforts needed to further improve it.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 13, No. 11 ( 2020-11-26), p. 5813-5831
    Abstract: Abstract. This study assesses the potential of satellite imagery of vertically integrated columns of dry-air mole fractions of CO2 (XCO2) to constrain the emissions from cities and power plants (called emission clumps) over the whole globe during 1 year. The imagery is simulated for one imager of the Copernicus mission on Anthropogenic Carbon Dioxide Monitoring (CO2M) planned by the European Space Agency and the European Commission. The width of the swath of the CO2M instruments is about 300 km and the ground horizontal resolution is about 2 km resolution. A Plume Monitoring Inversion Framework (PMIF) is developed, relying on a Gaussian plume model to simulate the XCO2 plumes of each emission clump and on a combination of overlapping assimilation windows to solve for the inversion problem. The inversion solves for the 3 h mean emissions (during 08:30–11:30 local time) before satellite overpasses and for the mean emissions during other hours of the day (over the aggregation between 00:00–08:30 and 11:30–00:00) for each clump and for the 366 d of the year. Our analysis focuses on the derivation of the uncertainty in the inversion estimates (the “posterior uncertainty”) of the clump emissions. A comparison of the results obtained with PMIF and those from a previous study using a complex 3-D Eulerian transport model for a single city (Paris) shows that the PMIF system provides the correct order of magnitude for the uncertainty reduction of emission estimates (i.e., the relative difference between the prior and posterior uncertainties). Beyond the one city or few large cities studied by previous studies, our results provide, for the first time, the global statistics of the uncertainty reduction of emissions for the full range of global clumps (differing in emission rate and spread, and distance from other major clumps) and meteorological conditions. We show that only the clumps with an annual emission budget higher than 2 MtC yr−1 can potentially have their emissions between 08:30 and 11:30 constrained with a posterior uncertainty smaller than 20 % for more than 10 times within 1 year (ignoring the potential to cross or extrapolate information between 08:30–11:30 time windows on different days). The PMIF inversion results are also aggregated in time to investigate the potential of CO2M observations to constrain daily and annual emissions, relying on the extrapolation of information obtained for 08:30–11:30 time windows during days when clouds and aerosols do not mask the plumes, based on various assumptions regarding the temporal auto-correlations of the uncertainties in the emission estimates that are used as a prior knowledge in the Bayesian framework of PMIF. We show that the posterior uncertainties of daily and annual emissions are highly dependent on these temporal auto-correlations, stressing the need for systematic assessment of the sources of uncertainty in the spatiotemporally resolved emission inventories used as prior estimates in the inversions. We highlight the difficulty in constraining the total budget of CO2 emissions from all the cities and power plants within a country or over the globe with satellite XCO2 measurements only, and calls for integrated inversion systems that exploit multiple types of measurements.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Carbon Balance and Management, Springer Science and Business Media LLC, Vol. 15, No. 1 ( 2020-12)
    Abstract: Satellite imagery will offer unparalleled global spatial coverage at high-resolution for long term cost-effective monitoring of CO 2 concentration plumes generated by emission hotspots. CO 2 emissions can then be estimated from the magnitude of these plumes. In this paper, we assimilate pseudo-observations in a global atmospheric inversion system to assess the performance of a constellation of one to four sun-synchronous low-Earth orbit (LEO) imagers to monitor anthropogenic CO 2 emissions. The constellation of imagers follows the specifications from the European Spatial Agency (ESA) for the Copernicus Anthropogenic Carbon Dioxide Monitoring (CO2M) concept for a future operational mission dedicated to the monitoring of anthropogenic CO 2 emissions. This study assesses the uncertainties in the inversion estimates of emissions (“posterior uncertainties”). Results The posterior uncertainties of emissions for individual cities and power plants are estimated for the 3 h before satellite overpasses, and extrapolated at annual scale assuming temporal auto-correlations in the uncertainties in the emission products that are used as a prior knowledge on the emissions by the Bayesian framework of the inversion. The results indicate that (i) the number of satellites has a proportional impact on the number of 3 h time windows for which emissions are constrained to better than 20%, but it has a small impact on the posterior uncertainties in annual emissions; (ii) having one satellite with wide swath would provide full images of the XCO 2 plumes, and is more beneficial than having two satellites with half the width of reference swath; and (iii) an increase in the precision of XCO 2 retrievals from 0.7 ppm to 0.35 ppm has a marginal impact on the emission monitoring performance. Conclusions For all constellation configurations, only the cities and power plants with an annual emission higher than 0.5 MtC per year can have at least one 8:30–11:30 time window during one year when the emissions can be constrained to better than 20%. The potential of satellite imagers to constrain annual emissions not only depend on the design of the imagers, but also strongly depend on the temporal error structure in the prior uncertainties, which is needed to be objectively assessed in the bottom-up emission maps.
    Type of Medium: Online Resource
    ISSN: 1750-0680
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2243512-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 11, No. 2 ( 2018-02-07), p. 681-708
    Abstract: Abstract. This study assesses the potential of 2 to 10 km resolution imagery of CO2 concentrations retrieved from the shortwave infrared measurements of a space-borne passive spectrometer for monitoring the spatially integrated emissions from the Paris area. Such imagery could be provided by missions similar to CarbonSat, which was studied as a candidate Earth Explorer 8 mission by the European Space Agency (ESA). This assessment is based on observing system simulation experiments (OSSEs) with an atmospheric inversion approach at city scale. The inversion system solves for hourly city CO2 emissions and natural fluxes, or for these fluxes per main anthropogenic sector or ecosystem, during the 6 h before a given satellite overpass. These 6 h correspond to the period during which emissions produce CO2 plumes that can be identified on the image from this overpass. The statistical framework of the inversion accounts for the existence of some prior knowledge with 50 % uncertainty on the hourly or sectorial emissions, and with ∼ 25 % uncertainty on the 6 h mean emissions, from an inventory based on energy use and carbon fuel consumption statistics. The link between the hourly or sectorial emissions and the vertically integrated column of CO2 observed by the satellite is simulated using a coupled flux and atmospheric transport model. This coupled model is built with the information on the spatial and temporal distribution of emissions from the emission inventory produced by the local air-quality agency (Airparif) and a 2 km horizontal resolution atmospheric transport model. Tests are conducted for different realistic simulations of the spatial coverage, resolution, precision and accuracy of the imagery from sun-synchronous polar-orbiting missions, corresponding to the specifications of CarbonSat and Sentinel-5 or extrapolated from these specifications. First, OSSEs are conducted with a rather optimistic configuration in which the inversion system is perfectly informed about the statistics of the limited number of error sources. These OSSEs indicate that the image resolution has to be finer than 4 km to decrease the uncertainty in the 6 h mean emissions by more than 50 %. More complex experiments assess the impact of more realistic error estimates that current inversion methods do not properly account for, in particular, the systematic measurement errors with spatially correlated patterns. These experiments highlight the difficulty to improve current knowledge on CO2 emissions for urban areas like Paris with CO2 observations from satellites, and call for more technological innovations in the remote sensing of vertically integrated columns of CO2 and in the inversion systems that exploit it.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 102, No. 4 ( 2021-04), p. 337-341
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...