GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Earth System Science Data, Copernicus GmbH, Vol. 13, No. 11 ( 2021-11-19), p. 5423-5440
    Abstract: Abstract. The first satellite-based global retrievals of terrestrial sun-induced chlorophyll fluorescence (SIF) were achieved in 2011. Since then, a number of global SIF datasets with different spectral, spatial, and temporal sampling characteristics have become available to the scientific community. These datasets have been useful to monitor the dynamics and productivity of a range of vegetated areas worldwide, but the coarse spatiotemporal sampling and low signal-to-noise ratio of the data hamper their application over small or fragmented ecosystems. The recent advent of the Copernicus Sentinel-5P TROPOMI mission and the high quality of its data products promise to alleviate this situation, as TROPOMI provides daily global measurements at a much denser spatial and temporal sampling than earlier satellite instruments. In this work, we present a global SIF dataset produced from TROPOMI measurements within the TROPOSIF project funded by the European Space Agency. The current version of the TROPOSIF dataset covers the time period between May 2018 and April 2021. Baseline SIF retrievals are derived from the 743–758 nm window. A secondary SIF dataset derived from an extended fitting window (735–758 nm window) is included. This provides an enhanced signal-to-noise ratio at the expense of a higher sensitivity to atmospheric effects. Spectral reflectance spectra at seven 3 nm windows devoid of atmospheric absorption within the 665–785 nm range are also included in the TROPOSIF dataset as an important ancillary variable to be used in combination with SIF. The methodology to derive SIF and ancillary data as well as results from an initial data quality assessment are presented in this work. The TROPOSIF dataset is available through the following digital object identifier (DOI): https://doi.org/10.5270/esa-s5p_innovation-sif-20180501_20210320-v2.1-202104 (Guanter et al., 2021).
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 48, No. 2 ( 2021-01-28)
    Abstract: We capture methane emission dynamics of a gas well blowout by combining observations from several satellites The PRISMA satellite is capable of retrieving both CO 2 and CH 4 emissions during flare combustion, allowing for an efficiency estimate Satellite emission estimates are validated against a bottom‐up oil/gas methane emission model
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2021
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 35, No. 15 ( 2008-08-12)
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2008
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 118, No. 20 ( 2013-10-27), p. 11,807-11,823
    Type of Medium: Online Resource
    ISSN: 2169-897X
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2013
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 7, No. 27 ( 2021-07-02)
    Abstract: Industrial emissions play a major role in the global methane budget. The Permian basin is thought to be responsible for almost half of the methane emissions from all U.S. oil- and gas-producing regions, but little is known about individual contributors, a prerequisite for mitigation. We use a new class of satellite measurements acquired during several days in 2019 and 2020 to perform the first regional-scale and high-resolution survey of methane sources in the Permian. We find an unexpectedly large number of extreme point sources (37 plumes with emission rates 〉 500 kg hour −1 ), which account for a range between 31 and 53% of the estimated emissions in the sampled area. Our analysis reveals that new facilities are major emitters in the area, often due to inefficient flaring operations (20% of detections). These results put current practices into question and are relevant to guide emission reduction efforts.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Elsevier BV ; 2022
    In:  Remote Sensing of Environment Vol. 277 ( 2022-08), p. 113069-
    In: Remote Sensing of Environment, Elsevier BV, Vol. 277 ( 2022-08), p. 113069-
    Type of Medium: Online Resource
    ISSN: 0034-4257
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 1498713-2
    SSG: 11
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 16, No. 22 ( 2016-11-18), p. 14371-14396
    Abstract: Abstract. Methane is a greenhouse gas emitted by a range of natural and anthropogenic sources. Atmospheric methane has been measured continuously from space since 2003, and new instruments are planned for launch in the near future that will greatly expand the capabilities of space-based observations. We review the value of current, future, and proposed satellite observations to better quantify and understand methane emissions through inverse analyses, from the global scale down to the scale of point sources and in combination with suborbital (surface and aircraft) data. Current global observations from Greenhouse Gases Observing Satellite (GOSAT) are of high quality but have sparse spatial coverage. They can quantify methane emissions on a regional scale (100–1000 km) through multiyear averaging. The Tropospheric Monitoring Instrument (TROPOMI), to be launched in 2017, is expected to quantify daily emissions on the regional scale and will also effectively detect large point sources. A different observing strategy by GHGSat (launched in June 2016) is to target limited viewing domains with very fine pixel resolution in order to detect a wide range of methane point sources. Geostationary observation of methane, still in the proposal stage, will have the unique capability of mapping source regions with high resolution, detecting transient "super-emitter" point sources and resolving diurnal variation of emissions from sources such as wetlands and manure. Exploiting these rapidly expanding satellite measurement capabilities to quantify methane emissions requires a parallel effort to construct high-quality spatially and sectorally resolved emission inventories. Partnership between top-down inverse analyses of atmospheric data and bottom-up construction of emission inventories is crucial to better understanding methane emission processes and subsequently informing climate policy.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 17, No. 9 ( 2017-05-09), p. 5751-5774
    Abstract: Abstract. Methane is an important atmospheric greenhouse gas and an adequate understanding of its emission sources is needed for climate change assessments, predictions, and the development and verification of emission mitigation strategies. Satellite retrievals of near-surface-sensitive column-averaged dry-air mole fractions of atmospheric methane, i.e. XCH4, can be used to quantify methane emissions. Maps of time-averaged satellite-derived XCH4 show regionally elevated methane over several methane source regions. In order to obtain methane emissions of these source regions we use a simple and fast data-driven method to estimate annual methane emissions and corresponding 1σ uncertainties directly from maps of annually averaged satellite XCH4. From theoretical considerations we expect that our method tends to underestimate emissions. When applying our method to high-resolution atmospheric methane simulations, we typically find agreement within the uncertainty range of our method (often 100 %) but also find that our method tends to underestimate emissions by typically about 40 %. To what extent these findings are model dependent needs to be assessed. We apply our method to an ensemble of satellite XCH4 data products consisting of two products from SCIAMACHY/ENVISAT and two products from TANSO-FTS/GOSAT covering the time period 2003–2014. We obtain annual emissions of four source areas: Four Corners in the south-western USA, the southern part of Central Valley, California, Azerbaijan, and Turkmenistan. We find that our estimated emissions are in good agreement with independently derived estimates for Four Corners and Azerbaijan. For the Central Valley and Turkmenistan our estimated annual emissions are higher compared to the EDGAR v4.2 anthropogenic emission inventory. For Turkmenistan we find on average about 50 % higher emissions with our annual emission uncertainty estimates overlapping with the EDGAR emissions. For the region around Bakersfield in the Central Valley we find a factor of 5–8 higher emissions compared to EDGAR, albeit with large uncertainty. Major methane emission sources in this region are oil/gas and livestock. Our findings corroborate recently published studies based on aircraft and satellite measurements and new bottom-up estimates reporting significantly underestimated methane emissions of oil/gas and/or livestock in this area in EDGAR.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  Atmospheric Measurement Techniques Vol. 9, No. 8 ( 2016-08-23), p. 3921-3937
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 9, No. 8 ( 2016-08-23), p. 3921-3937
    Abstract: Abstract. The TROPOspheric Monitoring Instrument (TROPOMI) on board the European Space Agency Sentinel-5 Precursor mission is scheduled for launch in the last quarter of 2016. As part of its operational processing the mission will provide CH4 and CO total columns using backscattered sunlight in the shortwave infrared band (2.3 µm). By adapting the CO retrieval algorithm, we have developed a non-scattering algorithm to retrieve total column HDO and H2O from the same measurements under clear-sky conditions. The isotopologue ratio HDO ∕ H2O is a powerful diagnostic in the efforts to improve our understanding of the hydrological cycle and its role in climate change, as it provides an insight into the source and transport history of water vapour, nature's strongest greenhouse gas. Due to the weak reflectivity over water surfaces, we need to restrict the retrieval to cloud-free scenes over land. We exploit a novel 2-band filter technique, using strong vs. weak water or methane absorption bands, to prefilter scenes with medium-to-high-level clouds, cirrus or aerosol and to significantly reduce processing time. Scenes with cloud top heights ≲1 km, very low fractions of high-level clouds or an aerosol layer above a high surface albedo are not filtered out. We use an ensemble of realistic measurement simulations for various conditions to show the efficiency of the cloud filter and to quantify the performance of the retrieval. The single-measurement precision in terms of δD is better than 15–25 ‰ for even the lowest surface albedo (2–4 ‰ for high albedos), while a small bias remains possible of up to  ∼ 20 ‰ due to remaining aerosol or up to  ∼ 70 ‰ due to remaining cloud contamination. We also present an analysis of the sensitivity towards prior assumptions, which shows that the retrieval has a small but significant sensitivity to the a priori assumption of the atmospheric trace gas profiles. Averaging multiple measurements over time and space, however, will reduce these errors, due to the quasi-random nature of the profile uncertainties. The sensitivity of the retrieval with respect to instrumental parameters within the expected instrument performance is  〈 3 ‰, which represents only a small contribution to the overall error budget. Spectroscopic uncertainties of the water lines, however, can have a larger and more systematic impact on the performance of the retrieval and warrant further reassessment of the water line parameters. With TROPOMI's high radiometric sensitivity, wide swath (resulting in daily global coverage) and efficient cloud filtering, in combination with a spatial resolution of 7 × 7 km2, we will greatly increase the amount of useful data on HDO, H2O and their ratio HDO ∕ H2O. We showcase the overall performance of the retrieval algorithm and cloud filter with an accurate simulation of TROPOMI measurements from a single overpass over parts of the USA and Mexico, based on MODIS satellite data and realistic conditions for the surface, atmosphere and chemistry (including isotopologues). This shows that TROPOMI will pave the way for new studies of the hydrological cycle, both globally and locally, on timescales of mere days and weeks instead of seasons and years and will greatly extend the HDO ∕ H2O datasets from the SCIAMACHY and GOSAT missions.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2021
    In:  Journal of Geophysical Research: Atmospheres Vol. 126, No. 21 ( 2021-11-16)
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 126, No. 21 ( 2021-11-16)
    Abstract: Methane growth rate in western Canada was positive during 2009–2013, fluctuated afterward, resulting in an undetectable trend after 2013 Methane growth seemed to be related to emissions from oil and gas industries Average growth rate (15.43 ± 8.19%/yr) between 2009 and 2013 likely reflects a trend in oil and gas CH 4 emissions in western Canada
    Type of Medium: Online Resource
    ISSN: 2169-897X , 2169-8996
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2021
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...