GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (4)
  • de Szoeke, Simon P.  (4)
Material
  • Online Resource  (4)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Monthly Weather Review Vol. 143, No. 7 ( 2015-07-01), p. 2441-2458
    In: Monthly Weather Review, American Meteorological Society, Vol. 143, No. 7 ( 2015-07-01), p. 2441-2458
    Abstract: Cloud-resolving large-eddy simulations (LES) on a 500 km × 500 km periodic domain coupled to a thermodynamic ocean mixed layer are used to study the effect of large-scale moisture convergence M on the convective population and heat and moisture budgets of the tropical atmosphere, for several simulations with M representative of the suppressed, transitional, and active phases of the Madden–Julian oscillation (MJO). For a limited-area model without an imposed vertical velocity, M controls the overall vertical temperature structure. Moisture convergence equivalent to ~200 W m−2 (9 mm day−1) maintains the observed temperature profile above 5 km. Increased convective heating for simulations with higher M is partially offset by greater infrared cooling, suggesting a potential negative feedback that helps maintain the weak temperature gradient conditions observed in the tropics. Surface evaporation decreases as large-scale moisture convergence increases, and is only a minor component of the overall water budget for convective conditions representing the active phase of the MJO. Cold pools generated by evaporation of precipitation under convective conditions are gusty, with roughly double the wind stress of their surroundings. Consistent with observations, enhanced surface evaporation due to cold pool gusts is up to 40% of the mean, but has a small effect on the total moisture budget compared to the imposed large-scale moisture convergence.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2017
    In:  Journal of the Atmospheric Sciences Vol. 74, No. 4 ( 2017-04-01), p. 1149-1168
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 74, No. 4 ( 2017-04-01), p. 1149-1168
    Abstract: Cold pools dominate the surface temperature variability observed over the central Indian Ocean (0°, 80°E) for 2 months of research cruise observations in the Dynamics of the Madden–Julian Oscillation (DYNAMO) experiment in October–December 2011. Cold pool fronts are identified by a rapid drop of temperature. Air in cold pools is slightly drier than the boundary layer (BL). Consistent with previous studies, cold pools attain wet-bulb potential temperatures representative of saturated downdrafts originating from the lower midtroposphere. Wind and surface fluxes increase, and rain is most likely within the ~20-min cold pool front. Greatest integrated water vapor and liquid follow the front. Temperature and velocity fluctuations shorter than 6 min achieve 90% of the surface latent and sensible heat flux in cold pools. The temperature of the cold pools recovers in about 20 min, chiefly by mixing at the top of the shallow cold wake layer, rather than by surface flux. Analysis of conserved variables shows mean BL air is composed of 51% air entrained from the BL top (800 m), 22% saturated downdrafts, and 27% air at equilibrium with the ocean surface. The number of cold pools, and their contribution to the BL heat and moisture, nearly doubles in the convectively active phase compared to the suppressed phase of the Madden–Julian oscillation.
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of the Atmospheric Sciences Vol. 76, No. 5 ( 2019-05-01), p. 1227-1244
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 76, No. 5 ( 2019-05-01), p. 1227-1244
    Abstract: A cloud-resolving model coupled to a mixed layer ocean with an initial 500-km-wide, +3-K sea surface temperature (SST) patch is used to demonstrate the relationship between tropical mesoscale SST gradients and convection under different wind speeds. On these scales, boundary layer convergence toward hydrostatic low surface pressure is partially responsible for triggering convection, but convection subsequently organizes into cells and squall lines that propagate away from the patch. For strong wind (12 m s−1), enhanced convection is shifted downstream from the patch and consists of relatively small cells that are enhanced from increased moist static energy (MSE) flux over the patch. Convection for weak wind (6 m s−1) develops directly over the patch, merging in larger-scale coherent squall-line systems that propagate away from the patch. Squall lines decay after approximately 1 day, and convection redevelops over the patch region after 2 days. Decreasing patch SST from ocean mixing in the coupled simulations affects the overall strength of the convection, but does not qualitatively alter the convective behavior in comparison with cases with a fixed 3-K SST anomaly. In all cases, increased fluxes of heat and moisture, along with latent heating from shallow convection, initially generate lower pressure over the patch and convergence of the boundary layer winds. Within about 1 day, secondary convective circulations, such as surface cold pools, act to spread the effects of the convection over the model domain and overwhelm the effect of low pressure. SST anomalies (1 and 0.5 K) generate enhanced convection only for winds below 6 m s−1.
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Monthly Weather Review Vol. 142, No. 11 ( 2014-11-01), p. 4284-4307
    In: Monthly Weather Review, American Meteorological Society, Vol. 142, No. 11 ( 2014-11-01), p. 4284-4307
    Abstract: The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current region of the Southern Ocean using the Weather Research and Forecasting (WRF) Model and the U.S. Navy Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model. The SST-induced wind response is assessed from eight simulations with different subgrid-scale vertical mixing parameterizations, validated using Quick Scatterometer (QuikSCAT) winds and satellite-based sea surface temperature (SST) observations on 0.25° grids. The satellite data produce a coupling coefficient of sU = 0.42 m s−1 °C−1 for wind to mesoscale SST perturbations. The eight model configurations produce coupling coefficients varying from 0.31 to 0.56 m s−1 °C−1. Most closely matching QuikSCAT are a WRF simulation with the Grenier–Bretherton–McCaa (GBM) boundary layer mixing scheme (sU = 0.40 m s−1 °C−1), and a COAMPS simulation with a form of Mellor–Yamada parameterization (sU = 0.38 m s−1 °C−1). Model rankings based on coupling coefficients for wind stress, or for curl and divergence of vector winds and wind stress, are similar to that based on sU. In all simulations, the atmospheric potential temperature response to local SST variations decreases gradually with height throughout the boundary layer (0–1.5 km). In contrast, the wind speed response to local SST perturbations decreases rapidly with height to near zero at 150–300 m. The simulated wind speed coupling coefficient is found to correlate well with the height-averaged turbulent eddy viscosity coefficient. The details of the vertical structure of the eddy viscosity depend on both the absolute magnitude of local SST perturbations, and the orientation of the surface wind to the SST gradient.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...