GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (24)
Document type
Keywords
Publisher
Language
  • 1
    Publication Date: 2021-02-04
    Description: The isotopic compositions of Li and B have great potential for the tracing of fluid sources and for the characterization of ore-forming processes. The fractionation of Li and B isotopes during the magmatic-hydrothermal transition in evolved granites, however, is not well understood as these rocks commonly show multiple late hydrothermal overprints. Tourmaline is sensitive to changes in melt and fluid compositions during its growth and resistant to alteration by later fluids, which makes it a good recorder of Li and B isotopic signatures and fractionation at late evolutionary stages of magmatic systems. To characterize the evolution of a Sn-ore forming granitic intrusion, we analyzed magmatic, hydrothermal, and detrital-sedimentary tourmaline from the Yuanbaoshan granite, associated cassiterite-tourmaline-quartz veins, and disseminated tourmaline-bearing cassiterite-sulfide ore in the sedimentary wall rocks. The Li and B isotopic compositions of tourmaline from these rocks do not covary, largely due to mineral-controlled decoupling during magmatic and hydrothermal processes. Because of the dominant role of tourmaline on the B budget of the rock, magmatic and hydrothermal tourmalines show little variation in δ11B (−12.5 to −8.2‰), a signature reflecting the metasedimentary protoliths of the melt. In contrast, several rock-forming minerals contribute to the budget of Li, which shows significant variation in δ7Li (−0.3 to +6.9‰). The isotopic fractionation of Li in tourmaline from rocks of the Yuanbaoshan area is controlled by three major processes: (i) fractional crystallization results in magmatic tourmaline having progressively higher δ7Li values and higher Li contents, (ii) the magmatic-hydrothermal transition leads to higher δ7Li values at lower Li contents in hydrothermal tourmaline, and (iii) extensive fluid-rock interaction adds isotopically light Li to hydrothermal tourmaline in the wall rocks. Extensive fluid-rock interaction also leached HREE, Mg, isotopically light B, and probably Sn from the granites and/or wall rocks. Tourmaline seems to robustly record progressive changes in Li isotopes in evolving magmatic-hydrothermal systems and hydrothermal mineral deposits.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: The Van (Eastern Anatolia, Turkey) earthquake occurred on Sunday, October 23, 2011 with a moment magnitude of 7.2. The tectonics of this region is characterized by strike–slip faulting on the Bitlis Suture Zone, and thrusting in the Zagros fold and thrust belt. Using high-rate (1 second) GPS data from permanent GNSS stations from the CORS-TR network, co-seismic displacements of eleven stations were determined using precise point positioning during this earthquake. We used the time series of coordinate changes for fourteen CORS-TR stations, and calculated the crust movements before and after the earthquake. According to the PPP solutions computed using high frequency GPS data to determine the co-seismic motions of stations, we conclude for the Van earthquake an occurrence time of 10:41:22 (UTC). No pre-seismic horizontal movement of stations at the level more than 5 mm before the earthquake could be observed. That means that no kinematic warning or prediction before the earthquake exists. Along an east–west horizontal line north of the Van Sea with a length of about 100 km, the northern part of this line experienced extension of 0.2–1 ppm in a NW–SE direction. The southern part experienced N–S shortening of 0.5–1.5 ppm. The N–S shortening we estimated geodetically matches well with the N–S shortening and thrust focal mechanism derived independently using seismic data by the USGS. Co-seismic surface displacements derived from the GPS data are consistent with the teleseismic source model given by the USGS. The geodetic source model derived from the GPS data reproduces the same moment magnitude and centroid as the teleseismic model, but shows a higher spatial resolution of the slip distribution. We also analyzed the post-seismic surface displacements derived from the GPS data within the first two weeks after the mainshock. No reasonable slip distribution on the co-seismic fault plane could be found, indicating that the sources for the early post-seismic deformation might come from the widely scattered aftershocks.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: We determined a high-resolution 3-D S-wave velocity model for a 26 km × 12 km area in the northern part of the basin of Santiago de Chile. To reach this goal, we used microtremor recordings at 125 sites for deriving the horizontal-to-vertical (H/V) spectral ratios that we inverted to retrieve local S-wave velocity profiles. In the inversion procedure, we used additional geological and geophysical constraints and values of the thickness of the sedimentary cover already determined by gravimetric measurements, which were found to vary substantially over short distances in the investigated area. The resulting model was derived by interpolation with a kriging technique between the single S-wave velocity profiles and shows locally good agreement with the few existing velocity profile data, but allows the entire area, as well as deeper parts of the basin, to be represented in greater detail. The wealth of available data allowed us to check if any correlation between the S-wave velocity in the uppermost 30 m (v30S) and the slope of topography, a new technique recently proposed by Wald and Allen, exists on a local scale. We observed that while one lithology might provide a greater scatter in the velocity values for the investigated area, almost no correlation between topographic gradient and calculated v30S exists, whereas a better link is found between v30S and the local geology. Finally, we compared the v30S distribution with the MSK intensities for the 1985 Valparaiso event, pointing out that high intensities are found where the expected v30S values are low and over a thick sedimentary cover. Although this evidence cannot be generalized for all possible earthquakes, it indicates the influence of site effects modifying the ground motion when earthquakes occur well outside of the Santiago basin.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Description: We present an analytical approach to compute the curvature effect by the new analytical solutions of coseismic deformation derived for the homogeneous sphere model. We consider two spheres with different radii: one is the same as earth and the other with a larger radius can approximate a half-space model. Then, we calculate the coseismic displacements for the two spheres and define the relative percentage of the displacements as the curvature effect. The near-field curvature effect is defined relative to the maximum coseismic displacement. The results show that the maximum curvature effect is about 4 per cent for source depths of less than 100 km, and about 30 per cent for source depths of less than 600 km. For the far-field curvature effect, we define it relative to the observing point. The curvature effect is extremely large and sometimes exceeds 100 per cent. Moreover, this new approach can be used to estimate any planet's curvature effect quantitatively. For a smaller sphere, such as the Moon, the curvature effect is much larger than that of the Earth, with an inverse ratio to the earth's radius.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Description: Amplitude ratio of 30 short-period conspicuous P5KP and PKPab phases from five intermediate depth or deep events in Fiji-Tonga recorded at European stations around 150° distance shows a mean value two to three times the ratio of the synthetic amplitudes obtained by the normal-mode theory (and ak135 model) or by full-wave theory (and PREM). There is a large variance in the results, also observed in five amplitude ratios from one event in Argentina observed at temporary stations in China around 156°. Global recordings of three major deep earthquakes in Fiji, Bonin, and Western Brazil observed at ASAR, WRA, and ZRNK arrays, at 59 North America stations and at six South Pole stations displayed conspicuous P4KP and PcP (or ScP) phases. The amplitude ratio values of P4KP vs P(S)cP are sometimes almost one order of magnitude larger than the corresponding values of the synthetics. In both cases, arrival times and slowness values (corrected for ellipticity and station elevation) at the distances up to 23° beyond the A cutoff point predicted by ray theory match both the synthetics, suggesting the observations are the AB branch of PmKP (m = 4, 5) around 1 Hz. In disagreement to ray theory, no reliable BC branch is observed neither on the recordings nor on the normal-mode synthetics. The high amplitude ratio values cannot be explained by realistic perturbations of the velocity or attenuation values of the global models in the proximity of the core-to-mantle boundary (CMB). We speculate that the focusing effects and/or strong scattering most likely associated to some anomalous velocity areas of the lowermost mantle are responsible for that. The results suggest limitations of the previous evaluations of the short-period attenuation in the outer core from PmKP amplitudes (m ≥ 3), irrespective of the fact that they are obtained by using ray theory, normal-mode or full-wave synthetics. Attempts to use PmKP arrival times in order to refine velocity structure in the proximity of CMB should be also regarded with care if the propagation times have been computed with ray theory.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: We propose a new rapid procedure for determining the energy magnitude Me for shallow events from broadband teleseismic P-wave signals within the distance range 20°–98°. To accomplish this task, we compute spectral amplitude decay functions for different periods using numerical simulations based on the reference Earth model AK135Q. By means of these functions, we correct the spectra of the teleseismic recordings for the propagation path effects, and calculate the radiated seismic energy ES, and hence Me. We use cumulative P-wave windows for simulating a real- or near real-time procedure and test it for 61 shallow earthquakes. The results show that our approach is able to provide a rapid and reliable Me determination within 7–15 minutes after the earthquake origin time, and is therefore suitable for implementation in rapid response systems.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Description: Lowermost mantle velocity in the area 15°S–70°N latitude/60°W–5° W longitude is estimated using two groups of observations, complementary to each other. There are 894 Pdif observations at stations in the Balkan and Eastern Mediterranean areas from 15 major earthquakes in Central and South America. Another 218 Pdif observations are associated with four earthquakes in Greece/Turkey and one event in Africa, recorded by American stations. A Pdif slowness tomographic approach of the structures immediately above the core-to-mantle boundary (CMB) is used, incorporating corrections for ellipticity, station elevation and velocity perturbations along the ray path. A low-velocity zone above CMB with a large geographical extent, approximately in the area (35–65°N) × (40–20°W), appears to have the velocity perturbations exceeding the value actually assumed by some global models. Most likely, it is extended beneath western Africa. A high-velocity area is observed west of the low-velocity zone. The results suggest that both Cape Verde and Azorean islands are located near transition areas from low-to-high velocity values in the lowermost mantle.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Description: A high-fidelity radon record covering nearly 40 years from the hot spring site of BangLazhang (BLZ), Southwestern China allows to study multi-year periodicities. At BLZ, radon dissolved in water (Radon), water temperature (WT), and spring discharge rate (DR) were measured daily from 1976 until 2015. Barometric pressure, regional rainfall, galactic cosmic rays (GCR flux is modulated by solar wind and thus a proxy for solar activity), and regional seismicity from the same period were considered to identify potentially influencing factors controlling the changes in radon [Yan et al., 2017]. Various wavelet techniques indicate that the long-period radon concentration is characterized by a quasi-decadal (8-11 years) cycle, matching well with the concurrent periodicity in water temperature, spring discharge rates. The BLZ hot spring monitoring site is maintained and operated by the China Earthquake Administration of Yunnan Province. Water from the spring is sampled once daily and measurements of radon have been performed routinely in a laboratory since 1976 April 6. The sample time is designated to occur at 8 o’clock in the morning in order to reduce the effect of daily variations. The radon concentration has been measured with three types of radon measurement instruments during the past 40 years. From 1976 April 6, to 1982 June 5, a FD-105 type radon gas detector was used, reporting the radon concentration in Eman. Eman is converted to the metric unit Bq/L using the relationship 1 Eman = 3.7 Bq/L. From 1982 June 6 to 2012 April 11, a FD-105K type electrometer (manufactured by Shanghai Electronic Instrument, co.) was used, the measurements given in Bq/L. Since 2012 April 12, a FD-125 type Radon & Thorium analyzer, manufactured by Beijing Nuclear Instrument Factory, sponsored by CNNC (China National Nuclear Corporation), has been used. Water sampled from the spring is degassed by bubbling air and transported into a chamber, where the radon concentration is measured in a ZnS cell connected to a photomultiplier detector, and a scintillation counter. The measurement precision of the instruments is 0.1 Bq/L. A solid radium source (226Ra) with a known radioactive radon content is used for the calibration of the water radon under normal working conditions. This source is used to measure and calculate the calibration value of the instrument. In addition to radon, water temperature and spring discharge rate are measured at the spring site when the water is sampled for radon. Temperature is measured using a mercury thermometer with a resolution of 0.1°C. Discharge rate is measured using the stopwatch capacity method, i.e., the required time per unit volume of water is measured. Barometric pressure has been measured since 1997. Regional rainfall data were downloaded through the CPC Merged Analysis of Precipitation (CMAP) for the same period to evaluate its possible influence on radon in the present study.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Description: The rupture processes of the 2015 April 25 Gorkha earthquake and its strongest aftershock occurred on May 12 in Nepal are investigated by joint inversion of seismological and geodetic data. Synthetic test shows that the sedimentary layers in the source region play an important role in the rupture process inversion. Our optimized model of the mainshock shows that the rupture has a unilateral propagation pattern. The dominant mechanism is pure thrust with maximum slip of 5.8 m, the rupture scale extends ~ 60 km along dip and ~ 150 km along strike, and the largest static stress change is ~ 7.6 MPa. The total seismic moment is 7.87 × 1020 N m, equivalent to Mw 7.9. Most seismic moment was released within 80 s and the majority seismic moment was released at the first 40 s. The rupture propagated in main slip asperity with a velocity of ~ 3.0 km/s. The strong aftershock magnitude is about Mw 7.3, and the peak slip is about 5.0 m, close to the peak slip of the mainshock. Moreover, the slips of the mainshock and the aftershocks are in good complementary, suggesting a triggering relationship between them. Considering the strain accumulation, the Gorkha earthquake ruptured only part of the seismic gap alone, thus still poses high earthquake risk, especially in the west side of the mainshock rupture zone.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...