GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Layer structure (Solids).  (1)
  • Polysaccharides-Industrial applications.  (1)
  • Englisch  (2)
  • 2020-2024  (2)
Publikationsart
Sprache
  • Englisch  (2)
Erscheinungszeitraum
  • 2020-2024  (2)
Jahr
  • 1
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Polysaccharides-Industrial applications. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (800 pages)
    Ausgabe: 1st ed.
    ISBN: 9781119711391
    Sprache: Englisch
    Anmerkung: Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Natural Polysaccharides From Aloe vera L. Gel (Aloe barbadensis Miller): Processing Techniques and Analytical Methods -- 1.1 Introduction -- 1.1.1 Gel Composition from A. vera -- 1.2 Applications of A. vera Mucilaginous Gel or Fractions -- 1.3 Aloe vera Gel Processing -- 1.3.1 Obtaining Polysaccharide Fraction or Acemannan -- 1.4 Analytical Methods Applied -- 1.4.1 Total Carbohydrates, Oligosaccharides, Acemannan and Free Sugars -- 1.4.2 Analytical Techniques -- 1.4.2.1 Chromatography Analysis -- 1.4.2.2 Infrared Spectroscopy (IR) -- 1.4.2.3 Nuclear Magnetic Resonance Spectroscopy -- 1.4.2.4 Mass Spectrometry -- 1.4.2.5 Ultraviolet-Visible Spectroscopy -- 1.4.2.6 Comprehensive Microarray Polymer Profiling -- 1.5 Conclusion -- References -- 2 Cell Wall Polysaccharides -- 2.1 Introduction to Cell Wall -- 2.2 Plant Cell Wall Polysaccharides -- 2.2.1 Cellulose -- 2.2.2 Hemicellulose -- 2.2.2.1 Xyloglucan -- 2.2.2.2 Xylans -- 2.2.2.3 Mannans -- 2.2.3 Callose -- 2.2.4 Pectic Polysaccharides -- 2.2.4.1 Homogalacturonan (HG) -- 2.2.4.2 Arabinan -- 2.3 Algal Cell Wall Polysaccharides -- 2.3.1 Alginates -- 2.3.2 Sulfated Galactans -- 2.3.3 Fucoidans -- 2.4 Fungal Cell Wall Polysaccharides -- 2.4.1 Glucan -- 2.4.2 Chitin and Chitosan -- 2.5 Bacterial Cell Wall Polysaccharides -- 2.5.1 Peptidoglycan -- 2.5.2 Lipopolysaccharides -- References -- 3 Marine Polysaccharides: Properties and Applications -- 3.1 Introduction -- 3.2 Polysaccharide Origins -- 3.3 Properties -- 3.3.1 Cellulose -- 3.3.2 Chitosan -- 3.3.3 Alginate -- 3.3.4 Carrageenan -- 3.3.5 Agar -- 3.3.6 Porphyran -- 3.3.7 Fucoidan -- 3.3.8 Ulvan -- 3.3.9 Exopolysaccharides From Microalgae -- 3.4 Applications of Polysaccharides -- 3.4.1 Biomedical Applications -- 3.4.1.1 Cellulose -- 3.4.1.2 Chitosan. , 3.4.1.3 Alginate -- 3.4.2 Food Applications -- 3.4.2.1 Cellulose -- 3.4.2.2 Chitosan -- 3.4.2.3 Alginates -- 3.4.2.4 Carrageenan -- 3.4.2.5 Agar -- 3.4.3 Pharmaceutical and Nutraceutical Applications -- 3.4.3.1 Cellulose -- 3.4.3.2 Chitosan -- 3.4.3.3 Alginate -- 3.4.3.4 Carrageenan -- 3.4.3.5 Porphyran -- 3.4.3.6 Fucoidan -- 3.4.4 Agriculture -- 3.5 Conclusions -- References -- 4 Seaweed Polysaccharides: Structure, Extraction and Applications -- 4.1 Introduction -- 4.1.1 Agar -- 4.1.2 Carrageenan -- 4.1.3 Alginate (Alginic Acid, Algin) -- 4.1.4 Fucoidan -- 4.1.5 Laminaran -- 4.1.6 Ulvan -- 4.2 Conclusion -- References -- 5 Agars: Properties and Applications -- 5.1 History and Origin of Agar -- 5.1.1 Agarophytes Used in Agar Manufacturing -- 5.2 Physical Properties of Agar Producing Seaweeds -- 5.3 Agar Manufacturing -- 5.3.1 Types of Agar Manufacturing -- 5.3.1.1 Freeze-Thaw Method -- 5.3.1.2 Syneresis Method -- 5.4 Structure of Agar -- 5.5 Heterogeneity of Agar -- 5.6 Physico-Chemical Characteristics of Agar -- 5.7 Chemical Characteristics of Agar -- 5.8 Factors Influencing the Characteristics of Agar -- 5.8.1 Techniques to Analyze the Fine Chemical Structure of Agar -- 5.8.2 Synergies and Antagonisms of Agar Gels -- 5.9 Uses of Agar in Various Sectors -- 5.9.1 Applications of Agar in Food Industry -- 5.9.2 Application of Agar in Harvesting Insects and Worms -- 5.9.3 Vegetable Tissue Culture Formulations -- 5.9.4 Culture Media for Microbes -- 5.9.5 Industrial Applications of Agar -- 5.10 Conclusion and Discussion -- References -- 6 Biopolysaccharides: Properties and Applications -- 6.1 Structure and Classification of Biopolysaccharides -- 6.1.1 Structure -- 6.1.2 Classification -- 6.1.3 Structural Characterization Techniques -- 6.2 Uses and Applications of Biopolysaccharides -- 6.2.1 Functional Fibers -- 6.2.2 Biomedicine. , 6.2.2.1 Tissue Engineering -- 6.2.2.2 Wound Healing -- 6.2.2.3 Drug Loading and Delivery -- 6.2.2.4 Therapeutics -- 6.2.3 Cosmetics -- 6.2.4 Foods and Food Ingredients -- 6.2.5 Biofuels -- 6.2.6 Wastewater Treatment -- 6.2.7 Textiles -- 6.3 Conclusion -- References -- 7 Chitosan Derivatives: Properties and Applications -- 7.1 Introduction -- 7.2 Properties of Chitosan Derivatives -- 7.2.1 Physiochemical Properties -- 7.2.2 Functional Properties -- 7.2.3 Biological Properties of Chitosan -- 7.3 Applications of Chitosan Derivatives -- 7.3.1 Anticancer Agents -- 7.3.2 Bone Tissue Material Formation -- 7.3.3 Wound Healing, Tissue Regeneration and Antimicrobial Resistance -- 7.3.4 Drug Delivery -- 7.3.5 Chromatographic Separations -- 7.3.6 Waste Management -- 7.3.7 Food Industry -- 7.3.8 In Cosmetics -- 7.3.9 In Paint as Antifouling Coatings -- 7.4 Conclusions -- Acknowledgement -- References -- 8 Green Seaweed Polysaccharides Inventory of Nador Lagoon in North East Morocco -- 8.1 Introduction -- 8.2 Nador Lagoon: Situation and Characteristics -- 8.3 Seaweed -- 8.4 Polysaccharides in Seaweed -- 8.5 Algae Polysaccharides in Nador Lagoon's Seaweed -- 8.5.1 C. prolifera -- 8.5.1.1 Sulfated Galactans -- 8.5.2 U. rigida & -- E. intestinalis -- 8.5.2.1 Ulvan -- 8.5.3 C. adhaerens, C. bursa, C. tomentosum -- 8.5.3.1 Sulfated Arabinans -- 8.5.3.2 Sulfated Arabinogalactans -- 8.5.3.3 Mannans -- 8.6 Conclusion -- References -- 9 Salep Glucomannan: Properties and Applications -- 9.1 Introduction -- 9.2 Production -- 9.3 Composition and Physicochemical Structure -- 9.4 Rheological Properties -- 9.5 Purification and Deacetylation -- 9.6 Food Applications -- 9.6.1 Beverage -- 9.6.2 Ice Cream and Emulsion Stabilizing -- 9.6.3 Edible Film/Coating -- 9.6.4 Gelation -- 9.7 Health Benefits -- 9.8 Conclusions and Future Trends -- References. , 10 Exudate Tree Gums: Properties and Applications -- 10.1 Introduction -- 10.1.1 Gum Arabic -- 10.1.2 Gum Karaya -- 10.1.3 Gum Kondagogu -- 10.1.4 Gum Ghatti -- 10.1.5 Gum Tragacanth -- 10.1.6 Gum Olibanum -- 10.2 Nanobiotechnology Applications -- 10.3 Minor Tree Gums -- 10.4 Conclusions -- Acknowledgment -- References -- 11 Cellulose and its Derivatives: Properties and Applications -- 11.1 Introduction -- 11.2 Main Raw Materials -- 11.3 Composition and Chemical Structure of Lignocellulosic Materials -- 11.4 Cellulose: Chemical Backbone and Crystalline Formats -- 11.5 Cellulose Extraction -- 11.5.1 Mechanical Methods -- 11.5.2 Chemical Methods -- 11.6 Cellulose Products and its Derivatives -- 11.7 Main Applications -- 11.8 Conclusion -- References -- 12 Starch and its Derivatives: Properties and Applications -- 12.1 Introduction -- 12.2 Physicochemical and Functional Properties of Starch -- 12.2.1 Size, Morphology and Crystallinity of Starch Granules -- 12.2.2 Physical Properties due to Associated Lipids, Proteins and Phosphorus With Starch Granules -- 12.2.3 Solubility and Swelling Capacity of Starch -- 12.2.4 Gelatinization and Retrogradation of Starch -- 12.2.5 Birefringence and Glass Transition Temperature of Starch -- 12.2.6 Rheological and Thermal Properties of Starch -- 12.2.7 Transmittance and Opacity of Starch -- 12.2.8 Melt Processability of Starch -- 12.3 Modification of Starch -- 12.3.1 Physical Modification of Starch -- 12.3.2 Chemical Modification of Starch -- 12.3.3 Dual Modification of Starch -- 12.3.4 Enzymatic Modification of Starch -- 12.3.5 Genetic Modification of Starch -- 12.4 Application of Starch and its Derivatives -- 12.4.1 In Food Industry -- 12.4.2 In Paper Industry -- 12.4.3 Starch as Binders -- 12.4.4 In Detergent Products -- 12.4.5 As Biodegradable Thermoplastic Materials or Bioplastics. , 12.4.6 In Pharmaceutical and Cosmetic Industries -- 12.4.7 As Industrial Raw Materials -- 12.4.8 As Adsorbents for Environmental Applications -- 12.4.9 As Food Packaging Materials -- 12.4.10 In Drug Delivery -- 12.4.11 As Antimicrobial Films and Coatings -- 12.4.12 In Advanced Functional Materials -- 12.5 Conclusion -- References -- 13 Crystallization of Polysaccharides -- 13.1 Introduction -- 13.2 Principles of Crystallization of Polysaccharides -- 13.3 Techniques for Crystallinity Measurement -- 13.4 Crystallization Behavior of Polysaccharides -- 13.4.1 Cellulose -- 13.4.2 Chitosan and Chitin -- 13.4.3 Starch -- 13.5 Polymer/Polysaccharide Crystalline Nanocomposites -- 13.6 Conclusion -- References -- 14 Polysaccharides as Novel Materials for Tissue Engineering Applications -- 14.1 Introduction -- 14.2 Types of Scaffolds for Tissue Engineering -- 14.3 Biomaterials for Tissue Engineering -- 14.4 Polysaccharide-Based Scaffolds for Tissue Engineering -- 14.4.1 Alginate-Based Scaffolds -- 14.4.2 Chitosan-Based Scaffolds -- 14.4.3 Cellulose-Based Scaffolds -- 14.4.4 Dextran and Pullulan-Based Scaffolds -- 14.4.5 Starch-Based Scaffolds -- 14.4.6 Xanthan-Based Scaffolds -- 14.4.7 Glycosaminoglycans-Based Scaffolds -- 14.5 Current Challenges and Future Perspectives -- Acknowledgements -- References -- 15 Structure and Solubility of Polysaccharides -- 15.1 Introduction -- 15.2 Polysaccharide Structure and Solubility in Water -- 15.3 Solubility and Molecular Weight -- 15.4 Solubility and Branching -- 15.5 Polysaccharide Solutions -- 15.6 Conclusions -- Acknowledgments -- References -- 16 Polysaccharides: An Efficient Tool for Fabrication of Carbon Nanomaterials -- 16.1 Introduction -- 16.2 Aerogels -- 16.2.1 Plant and Bacterial Cellulose -- 16.2.2 Carbon Derived From Nanocrystalline Cellulose of Plant Origin. , 16.2.3 Carbon Aerogels Produced From Bacterial Cellulose.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Layer structure (Solids). ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (403 pages)
    Ausgabe: 1st ed.
    ISBN: 9781119655206
    DDC: 620.11
    Sprache: Englisch
    Anmerkung: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 2D Metal-Organic Frameworks -- 1.1 Introduction -- 1.2 Synthesis Approaches -- 1.2.1 Selection of Synthetic Raw Materials -- 1.2.2 Solvent Volatility Method -- 1.2.3 Diffusion Method -- 1.2.3.1 Gas Phase Diffusion -- 1.2.3.2 Liquid Phase Diffusion -- 1.2.4 Sol-Gel Method -- 1.2.5 Hydrothermal/Solvothermal Synthesis Method -- 1.2.6 Stripping Method -- 1.2.7 Microwave Synthesis Method -- 1.2.8 Self-Assembly -- 1.2.9 Special Interface Synthesis Method -- 1.2.10 Surfactant-Assisted Synthesis Method -- 1.2.11 Ultrasonic Synthesis -- 1.3 Structures, Properties, and Applications -- 1.3.1 Structure and Properties of MOFs -- 1.3.2 Application in Biomedicine -- 1.3.3 Application in Gas Storage -- 1.3.4 Application in Sensors -- 1.3.5 Application in Chemical Separation -- 1.3.6 Application in Catalysis -- 1.3.7 Application in Gas Adsorption -- 1.4 Summary and Outlook -- Acknowledgements -- References -- Chapter 2 2D Black Phosphorus -- 2.1 Introduction -- 2.2 The Research on Black Phosphorus -- 2.2.1 The Structure and Properties -- 2.2.1.1 The Structure of Black Phosphorus -- 2.2.1.2 The Properties of Black Phosphorus -- 2.2.2 Preparation Methods -- 2.2.2.1 Mechanical Exfoliation -- 2.2.2.2 Liquid-Phase Exfoliation -- 2.2.3 Antioxidant -- 2.2.3.1 Degradation Mechanism -- 2.2.3.2 Adding Protective Layer -- 2.2.3.3 Chemical Modification -- 2.2.3.4 Doping -- 2.3 Applications of Black Phosphorus -- 2.3.1 Electronic and Optoelectronic -- 2.3.1.1 Field-Effect Transistors -- 2.3.1.2 Photodetector -- 2.3.2 Energy Storage and Conversion -- 2.3.2.1 Catalysis -- 2.3.2.2 Batteries -- 2.3.2.3 Supercapacitor -- 2.3.3 Biomedical -- 2.4 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 3 2D Metal Carbides -- 3.1 Introduction -- 3.2 Synthesis Approaches -- 3.2.1 Ti3C2 Synthesis. , 3.2.2 V2C Synthesis -- 3.2.3 Ti2C Synthesis -- 3.2.4 Mo2C Synthesis -- 3.3 Structures, Properties, and Applications -- 3.3.1 Structures and Properties of 2D Metal Carbides -- 3.3.1.1 Structures and Properties of Ti3C2 -- 3.3.1.2 Structural Properties of Ti2C -- 3.3.1.3 Structural Properties of Mo2C -- 3.3.1.4 Structural Properties of V2C -- 3.3.2 Carbide Materials in Energy Storage Applications -- 3.3.2.1 Ti3C2 -- 3.3.2.2 Ti2C -- 3.3.2.3 V2C -- 3.3.2.4 Mo2C -- 3.3.3 Metal Carbide Materials in Catalysis Applications -- 3.3.3.1 Ti3C2 -- 3.3.3.2 V2C -- 3.3.3.3 Mo2C -- 3.3.4 Metal Carbide Materials in Environmental Management Applications -- 3.3.4.1 Ti3C2 in Environmental Management Applications -- 3.3.4.2 Ti2C in Environmental Management Applications -- 3.3.4.3 V2C in Environmental Management Applications -- 3.3.4.4 Mo2C in Environmental Management Applications -- 3.3.5 Carbide Materials in Biomedicine Applications -- 3.3.5.1 Ti3C2 in Biomedicine Applications -- 3.3.5.2 Ti2C in Biomedicine Applications -- 3.3.5.3 V2C in Biomedicine Applications -- 3.3.5.4 Mo2C in Biomedicine Applications -- 3.3.6 Carbide Materials in Gas Sensing Applications -- 3.3.6.1 Ti3C2 in Gas Sensing Applications -- 3.3.6.2 Ti2C in Gas Sensing Applications -- 3.3.6.3 V2C in Gas Sensing Applications -- 3.3.6.4 Mo2C in Gas Sensing Applications -- 3.4 Summary and Outlook -- Acknowledgements -- References -- Chapter 4 2D Carbon Materials as Photocatalysts -- 4.1 Introduction -- 4.2 Carbon Nanostructured-Based Materials -- 4.2.1 Forms of Carbon -- 4.2.2 Synthesis of Carbon Nanostructured-Based Materials -- 4.3 Photo-Degradation of Organic Pollutants -- 4.3.1 Graphene, Graphene Oxide, Graphene Nitride (g-C3N4) -- 4.3.1.1 Graphene-Based Materials -- 4.3.1.2 Graphene Nitride (g-C3N4) -- 4.3.2 Carbon Dots (CDs) -- 4.3.3 Carbon Spheres (CSs). , 4.4 Carbon-Based Materials for Hydrogen Production -- 4.5 Carbon-Based Materials for CO2 Reduction -- References -- Chapter 5 Sensitivity Analysis of Surface Plasmon Resonance Biosensor Based on Heterostructure of 2D BlueP/MoS2 and MXene -- 5.1 Introduction -- 5.2 Proposed SPR Sensor, Design Considerations, and Modeling -- 5.2.1 SPR Sensor and Its Sensing Principle -- 5.2.2 Design Consideration -- 5.2.2.1 Layer 1: Prism for Light Coupling -- 5.2.2.2 Layer 2: Metal Layer -- 5.2.2.3 Layer 3: BlueP/MoS2 Layer -- 5.2.2.4 Layer 4: MXene (Ti3C2Tx) Layer as BRE for Biosensing -- 5.2.2.5 Layer 5: Sensing Medium (RI-1.33-1.335) -- 5.2.3 Proposed Sensor Modeling -- 5.3 Results Discussion -- 5.3.1 Role of Monolayer BlueP/MoS2 and MXene (Ti3C2Tx) and Its Comparison With Conventional SPR -- 5.3.2 Influence of Varying Heterostructure Layers for Proposed Design -- 5.3.3 Effect of Changing Prism Material and Metal on Performance of Proposed Design -- 5.4 Conclusion -- References -- Chapter 6 2D Perovskite Materials and Their Device Applications -- 6.1 Introduction -- 6.2 Structure -- 6.2.1 Crystal Structure -- 6.2.2 Electronic Structure of 2D Perovskites -- 6.2.3 Structure of Photovoltaic Cell -- 6.3 Discussion and Applications -- 6.4 Conclusion -- References -- Chapter 7 Introduction and Significant Parameters for Layered Materials -- 7.1 Graphene -- 7.2 Phosphorene -- orthorhombic rhombohedral Simple cubic -- semiconductor semimetal metal -- 7.3 Silicene -- 7.4 ZnO -- 7.5 Transition Metal Dichalcogenides (TMDCs) -- 7.6 Germanene and Stanene -- 7.7 Heterostructures -- References -- Chapter 8 Increment in Photocatalytic Activity of g-C3N4 Coupled Sulphides and Oxides for Environmental Remediation -- 8.1 Introduction -- 8.2 GCN Coupled Metal Sulphide Heterojunctions for Environment Remediation -- 8.2.1 GCN and MoS2-Based Photocatalysts. , 8.2.2 GCN and CdS-Based Heterojunctions -- 8.2.3 Some Other GCN Coupled Metal Sulphide Photocatalysts -- 8.3 GCN Coupled Metal Oxide Heterojunctions for Environment Remediation -- 8.3.1 GCN and MoO3-Based Heterojunctions -- 8.3.2 GCN and Fe2O3-Based Heterojunctions -- 8.3.3 Some Other GCN Coupled Metal Oxide Photocatalysts -- 8.4 Conclusions and Outlook -- References -- Chapter 9 2D Zeolites -- 9.1 Introduction -- 9.1.1 What is 2D Zeolite? -- 9.1.2 Advancement in Zeolites to 2D Zeolite -- 9.2 Synthetic Method -- 9.2.1 Bottom-Up Method -- 9.2.2 Top-Down Method -- 9.2.3 Support-Assisted Method -- 9.2.4 Post-Synthesis Modification of 2D Zeolites -- 9.3 Properties -- 9.4 Applications -- 9.4.1 Petro-Chemistry -- 9.4.2 Biomass Conversion -- 9.4.2.1 Pyrolysis of Solid Biomass -- 9.4.2.2 Condensation Reactions -- 9.4.2.3 Isomerization -- 9.4.2.4 Dehydration Reactions -- 9.4.3 Oxidation Reactions -- 9.4.4 Fine Chemical Synthesis -- 9.4.5 Organometallics -- 9.5 Conclusion -- References -- Chapter 10 2D Hollow Nanomaterials -- 10.1 Introduction -- 10.2 Structural Aspects of HNMs -- 10.3 Synthetic Approaches -- 10.3.1 Template-Based Strategies -- 10.3.1.1 Hard Templating -- 10.3.1.2 Soft Templating -- 10.3.2 Self-Templating Strategies -- 10.3.2.1 Surface Protected Etching -- 10.3.2.2 Ostwald Ripening -- 10.3.2.3 Kirkendall Effect -- 10.3.2.4 Galvanic Replacement -- 10.4 Medical Applications of HNMs -- 10.4.1 Imaging and Diagnosis Applications -- 10.4.2 Applications of Nanotube Arrays -- 10.4.2.1 Pharmacy and Medicine -- 10.4.2.2 Cancer Therapy -- 10.4.2.3 Immuno and Hyperthermia Therapy -- 10.4.2.4 Infection Therapy and Gene Therapy -- 10.4.3 Hollow Nanomaterials in Diagnostics and Therapeutics -- 10.4.4 Applications in Regenerative Medicine -- 10.4.5 Anti-Neurodegenerative Applications -- 10.4.6 Photothermal Therapy -- 10.4.7 Biosensors. , 10.5 Non-Medical Applications of HNMs -- 10.5.1 Catalytic Micro or Nanoreactors -- 10.5.2 Energy Storage -- 10.5.2.1 Lithium Ion Battery -- 10.5.2.2 Supercapacitor -- 10.5.3 Nanosensors -- 10.5.4 Wastewater Treatment -- 10.6 Toxicity of 2D HNMs -- 10.7 Future Challenges -- 10.8 Conclusion -- Acknowledgement -- References -- Chapter 11 2D Layered Double Hydroxides -- 11.1 Introduction -- 11.2 Structural Aspects -- 11.3 Synthesis of LDHs -- 11.3.1 Co-Precipitation Method -- 11.3.2 Urea Hydrolysis -- 11.3.3 Ion-Exchange Method -- 11.3.4 Reconstruction Method -- 11.3.5 Hydrothermal Method -- 11.3.6 Sol-Gel Method -- 11.4 Nonmedical Applications of LDH -- 11.4.1 Adsorbent -- 11.4.2 Catalyst -- 11.4.3 Sensors -- 11.4.4 Electrode -- 11.4.5 Polymer Additive -- 11.4.6 Anion Scavenger -- 11.4.7 Flame Retardant -- 11.5 Biomedical Applications -- 11.5.1 Biosensors -- 11.5.2 Scaffolds -- 11.5.3 Anti-Microbial Agents -- 11.5.4 Drug Delivery -- 11.5.5 Imaging -- 11.5.6 Protein Purification -- 11.5.7 Gene Delivery -- 11.6 Toxicity -- 11.7 Conclusion -- Acknowledgement -- References -- Chapter 12 Experimental Techniques for Layered Materials -- 12.1 Introduction -- 12.2 Methods for Synthesis of Graphene Layered Materials -- 12.3 Selection of a Suitable Metallic Substrate -- 12.4 Graphene Synthesis by HFTCVD -- 12.5 Graphene Transfer -- 12.6 Characterization Techniques -- 12.6.1 X-Ray Diffraction Technique -- d D k -- 12.6.2 Field Emission Scanning Electron Microscopy (FESEM) -- 12.6.3 Transmission Electron Microscopy (TEM) -- 12.6.4 Fourier Transform Infrared Radiation (FTIR) -- 12.6.5 UV-Visible Spectroscopy -- 12.6.6 Raman Spectroscopy -- 12.6.7 Low Energy Electron Microscopy (LEEM) -- 12.7 Potential Applications of Graphene and Derived Materials -- 12.8 Conclusion -- Acknowledgement -- References -- Chapter 13 Two-Dimensional Hexagonal Boron Nitride and Borophenes. , 13.1 Two-Dimensional Hexagonal Boron Nitride (2D h-BN): An Introduction.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...