GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Sewage-Purification. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (460 pages)
    Edition: 1st ed.
    ISBN: 9783030803346
    Series Statement: Environmental Chemistry for a Sustainable World Series ; v.70
    Language: English
    Note: Intro -- Foreword -- Contents -- About the Editors -- Chapter 1: Analytical Methods for the Determination of Heavy Metals in Water -- 1.1 Introduction -- 1.2 Total Concentration and Speciation Analysis -- 1.3 Health and Legislation -- 1.4 Sample Preparation for Elemental Analysis of Heavy Metals -- 1.4.1 Solid-Phase Extraction -- 1.4.1.1 Classic Solid-Phase Extraction -- 1.4.1.1.1 Modern Sorbents for Classic Solid-Phase Extraction -- 1.4.1.1.2 Micro Solid-Phase Extraction -- 1.4.1.2 Dispersive Solid-Phase Extraction -- 1.4.1.2.1 Dispersion Techniques -- 1.4.1.2.2 Modern Sorbents for Dispersive Solid-Phase Extraction and Dispersive Micro-Solid Phase Extraction -- Nanostructured Materials -- Hybrid Materials -- 1.4.1.3 Magnetic Solid-Phase Extraction -- 1.4.1.3.1 Advanced Magnetic Sorbents -- 1.4.2 Liquid-Liquid Extraction -- 1.4.2.1 Modern Solvents Used in Liquid-Liquid Extraction -- 1.4.2.1.1 Non-ionic or Zwitterionic Surfactants -- 1.4.2.1.2 Ionic Liquids -- 1.4.2.1.3 Deep Eutectic Solvents -- 1.4.2.2 Novel Liquid-Liquid Microextraction Techniques -- 1.4.2.2.1 Dispersive Liquid-Liquid Microextraction Techniques -- 1.4.2.2.2 In-Situ Phase Separation Techniques -- 1.4.2.2.3 Cloud Point Extraction -- 1.4.2.2.4 Non-dispersive Microextraction Techniques -- 1.4.2.3 Liquid-Liquid Extraction in Flow Analysis -- 1.5 Analytical Techniques for Heavy Metal Detection -- 1.5.1 Spectroscopic Techniques -- 1.5.1.1 Atomic Absorption Spectroscopy -- 1.5.1.2 Atomic Fluorescence Spectrometry -- 1.5.1.3 Atomic Emission Spectrometry -- 1.5.1.4 Inductively Coupled Plasma-Mass Spectrometry -- 1.5.1.4.1 Single Particle Inductively Coupled Plasma-Mass Spectrometry -- 1.5.1.5 Laser-Induced Breakdown Spectroscopy -- 1.5.1.6 X-Ray Fluorescence -- 1.5.1.7 UV-Vis Spectrophotometry -- 1.5.2 Electrochemical Techniques -- 1.5.2.1 Potentiostatic Techniques. , 1.5.2.1.1 Amperometry -- 1.5.2.1.2 Chronocoulometry -- 1.5.2.1.3 Voltammetric Techniques -- 1.5.2.2 Galvanostatic Stripping Chronopotentiometry -- 1.5.2.3 Electrochemiluminescence -- 1.5.3 Other Methods -- 1.5.3.1 Ion Chromatography -- 1.5.3.2 Surface-Enhanced Raman Spectroscopy -- 1.5.3.3 Bio Methods -- 1.6 Conclusions and Future Perspectives -- References -- Chapter 2: Olive-Oil Waste for the Removal of Heavy Metals from Wastewater -- 2.1 Introduction -- 2.2 Olive Tree Pruning as Biosorbent of Heavy Metals from Aqueous Solutions -- 2.2.1 Characterization -- 2.2.2 Biosorption Tests -- 2.3 Olive Stone as Biosorbent of Heavy Metals from Aqueous Solutions -- 2.3.1 Characterization -- 2.3.2 Biosorption Tests -- 2.4 Olive Pomace and Olive-Cake as Biosorbents of Heavy Metals from Aqueous Solutions -- 2.4.1 Characterization -- 2.4.2 Biosorption Tests -- 2.5 Other Valorization Opportunities for Olive-Oil Waste -- 2.6 Conclusions -- References -- Chapter 3: Metal Oxide Composites for Heavy Metal Ions Removal -- 3.1 Introduction -- 3.2 Issues in Environmental Remediation -- 3.3 Different Types of Magnetic Sorbents -- 3.3.1 Iron Oxide Modified Nanoparticle -- 3.3.2 Zeolite -- 3.3.3 Silica -- 3.3.4 Polymer Functionalization -- 3.3.5 Chitosan and Alginate -- 3.3.6 Activated Carbon -- 3.3.7 Carbon Nanotubes (CNTs) and Graphene -- 3.3.8 Agricultural Wastes -- 3.4 Case Studies -- 3.4.1 Characterization -- 3.4.2 Factors Affecting Sorption Processes -- 3.4.3 Agro-Based Magnetic Biosorbents Recovery and Reusability -- 3.5 Conclusion -- References -- Chapter 4: Two-Dimensional Materials for Heavy Metal Removal -- 4.1 Introduction -- 4.2 Heavy Metal Ions Removal Mechanism -- 4.2.1 Surface Complexation -- 4.2.2 Van der Waals Interaction -- 4.2.3 Ion Exchange -- 4.3 Different Types of Two-Dimensional Material for Heavy Metal Removal. , 4.3.1 Graphene-Based Two-Dimensional Materials -- 4.3.1.1 Structure -- 4.3.1.2 Graphene-Based Materials for Heavy Metal Removal -- 4.3.2 Dichalcogenides -- 4.3.2.1 Structure -- 4.3.2.2 Molybdenum Disulfide for Heavy Metal Removal -- 4.3.3 MXenes -- 4.3.3.1 Structure -- 4.3.3.2 MXenes for Heavy Metal Removal -- 4.3.4 Clay Minerals -- 4.3.4.1 Structure -- 4.3.4.2 Clay Mineral for Heavy Metal Removal -- 4.3.5 Layered Double Hydroxides -- 4.3.5.1 Structure -- 4.3.5.2 Layered Double Hydroxides for Heavy Metal Removal -- 4.3.6 Layered Zeolites -- 4.3.6.1 Structure -- 4.3.6.2 Layered Zeolites for Heavy Metal Removal -- 4.3.7 Other Two-Dimensional Materials -- 4.4 Heavy Metal Removal Other than Adsorption -- 4.5 Conclusions and Perspectives -- Appendix: List of Two-Dimensional Materials that Mentioned in this Chapter for Heavy Metal Removal and their Removal Capacities -- References -- Chapter 5: Membranes for Heavy Metals Removal -- 5.1 Introduction -- 5.2 Electrodialysis -- 5.2.1 Electrodialysis Applied to Metal Removal -- 5.2.2 Principle -- 5.2.3 Evaluation and Control Parameters -- 5.2.4 Use in Electroplating Industry -- 5.2.4.1 Zinc -- 5.2.4.2 Chromium -- 5.2.4.3 Copper -- 5.2.4.4 Nickel -- 5.2.5 Use in Mining and Mineral Processing Industry -- 5.2.6 Final Considerations -- References -- Chapter 6: Metal Oxides for Removal of Heavy Metal Ions -- 6.1 Introduction -- 6.2 Adsorption Methods -- 6.3 Metal Oxides for the Removal of Heavy Metal Ions from Water -- 6.3.1 Titanium Dioxide -- 6.3.2 Manganese Dioxide -- 6.3.3 Iron Oxide -- 6.3.4 Aluminum Oxide -- 6.3.5 Binary Metal Oxides -- 6.4 Conclusion -- References -- Chapter 7: Organic-Inorganic Ion Exchange Materials for Heavy Metal Removal from Water -- 7.1 Introduction -- 7.2 Ion Exchange Process -- 7.3 Ion Exchange Materials -- 7.3.1 Inorganic Ion Exchangers -- 7.3.2 Organic Ion Exchangers. , 7.4 Heavy Metal Removal with Ion Exchange Materials -- 7.4.1 Lead (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.2 Mercury (II) Removal from Waste Water with Organic-Inorganic Ion Exchangers -- 7.4.3 Cadmium (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.4 Nickel (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.5 Chromium (III, VI) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.6 Copper (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.7 Zinc (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.5 Conclusion -- References -- Chapter 8: Low-Cost Technology for Heavy Metal Cleaning from Water -- 8.1 Introduction -- 8.2 Sources and Impact -- 8.3 Different Routes of Contamination -- 8.4 Conventional Water Treatment Methods -- 8.4.1 Preliminary Treatment -- 8.4.2 Secondary Water Treatment -- 8.4.3 Tertiary Water Treatment -- 8.4.4 Membrane Filtration -- 8.5 Advanced Technology for Heavy Metal Ion Removal -- 8.5.1 Nano-Adsorption -- 8.5.2 Molecularly-Imprinted Polymers -- 8.5.3 Layered Double Hydroxides (LDH) and Covalent-Organic Framework (COF) -- 8.5.4 Emerging Membrane Technologies -- 8.6 Low-Cost and Biotechnological Approaches -- 8.6.1 Biosorption -- 8.6.2 Microbial Remediation -- 8.6.3 Biotechnological Strategies -- 8.7 Conclusion -- References -- Chapter 9: Use of Nanomaterials for Heavy Metal Remediation -- 9.1 General Introduction -- 9.2 Heavy Metals in the Environment -- 9.2.1 Characteristics of Selected Heavy Metals -- 9.3 Wastewater Treatment -- 9.4 Nanomaterials -- 9.4.1 Clay Minerals -- 9.4.2 Layered Double Hydroxide and Their Mixed-Oxides Counterparts -- 9.4.3 Zeolites -- 9.4.4 Two-dimensional Early Transition Metal Carbides and Carbonitrides -- 9.4.5 Metal Based Nanoparticles. , 9.4.5.1 Zero-valent Metals -- 9.4.5.2 Metal Oxides -- 9.4.6 Carbon-based Materials -- 9.4.6.1 Carbon Nanotubes -- 9.4.6.2 Fullerenes -- 9.4.6.3 Graphene -- 9.4.6.4 Graphene Oxide -- 9.4.6.5 Reduced Graphene Oxide -- 9.4.6.6 Graphitic Carbon Nitride -- 9.4.7 Metal Organic Frameworks -- 9.5 Disadvantages of Using Nanomaterials -- 9.6 Conclusions -- References -- Chapter 10: Ecoengineered Approaches for the Remediation of Polluted River Ecosystems -- 10.1 Introduction -- 10.2 Occurrence of Pollutants, Emerging Contaminants and Their Riverine Fates -- 10.3 Hazardous Effects of Water Contaminants on Aquatic and Terrestrial Biota -- 10.4 Historic Concepts of River Bioremediation -- 10.5 Physico-chemical River Remediation Methods -- 10.6 Eco-engineered River Water Remediation Technologies -- 10.6.1 Plant Based River Remediation Systems -- 10.6.1.1 Constructed Wetlands -- 10.6.1.2 Ecological Floating Wetlands, Beds and Islands -- 10.6.1.3 Eco-tanks -- 10.6.1.4 Bio-racks -- 10.6.2 Microorganisms Based River Remediation Systems -- 10.6.2.1 Biofilm Based Eco-engineered Treatment Systems -- 10.6.2.1.1 Bio-filters in River Bioremediation -- 10.6.2.2 Periphyton Based Technologies -- 10.7 In Situ Emerging Integrated Systems for the River Bioremediation -- 10.8 Concluding Remarks -- References -- Chapter 11: Ballast Water Definition, Components, Aquatic Invasive Species, Control and Management and Treatment Technologies -- 11.1 Introduction -- 11.2 Component of Ballast Water -- 11.3 Aquatic Invasive Species -- 11.4 The International Convention for the Control and Management of Ships Ballast Water and Sediments -- 11.5 IMO Standards for Ballast Water Quality -- 11.6 Management Options of Ballast Water -- 11.7 Ballast Water Treatment Technologies -- 11.7.1 Mechanical Treatment -- 11.7.2 Physical Treatment -- 11.7.2.1 Ultrasound and Cavitation. , 11.7.3 Chemical Treatment.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Semiconductors-Optical properties. ; Electronic books.
    Description / Table of Contents: This comprehensive reference describes the classifications, optical properties and applications of semiconductors. Accomplished experts in the field share their knowledge and examine new developments. This is an invaluable resource for engineers, scientists, academics and Industry R&D teams working in applied physics.
    Type of Medium: Online Resource
    Pages: 1 online resource (186 pages)
    Edition: 1st ed.
    ISBN: 9781000598957
    DDC: 537.6/226
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Editors -- Contributors -- Chapter 1: Semiconductor Optical Fibers -- Chapter 2: Optical Properties of Semiconducting Materials for Solar Photocatalysis -- Chapter 3: Semiconductor Optical Memory Devices -- Chapter 4: Semiconductor Optical Utilization in Agriculture -- Chapter 5: Nonlinear Optical Properties of Semiconductors, Principles, and Applications -- Chapter 6: Semiconductor Photoresistors -- Chapter 7: Semiconductor Photovoltaic -- Chapter 8: Progress and Challenges of Semiconducting Materials for Solar Photocatalysis -- Chapter 9: Linear Optical Properties of Semiconductors: Principles and Applications -- Chapter 10: Computational Techniques on Optical Properties of Metal-Oxide Semiconductors -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Environmental chemistry. ; Environmental management. ; Pollution. ; Waste management. ; Water.
    Description / Table of Contents: Chapter 01 Photocatalytic Remediation of Organic Pollutants in Waste -- Chapter 02 Carbon Nitride/Metal Oxide Hybrids for Visible Light Harvesting and Water Remediation -- Chapter 03 Metal and Carbon Quantum Dots Photocatalysts for Water Purification -- Chapter 04 Photocatalytic Degradation of Azo Dyes in Water -- Chapter 05 Sonochemical Treatment of Textile Wastewater -- Chapter 06 Degradation Mechanism of Pollutants using Sono-Hybrid Advanced Oxidation Processes -- Chapter 07 Photocatalytic Nanomaterials for Bacterial Disinfection -- Chapter 08 Role of Membranes in Wastewater Treatment -- Chapter 09 Nanomaterials for the Photoremediation of Pollutants -- Chapter 10 Bismuth-Based Compounds as Visible Light Photocatalyst for Remediation and Water Splitting -- Chapter 11 Solar Photocatalytic Treatment of Tannery Effluents -- Chapter 12 Functionalized Ionic Liquids for fhe Photodegradation of Dyes -- Chapter 13 Photocatalytic Degradation of Chlorophenols and Antibiotics from Wastewater.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XV, 438 p. 139 illus., 75 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030547233
    Series Statement: Environmental Chemistry for a Sustainable World 57
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Agriculture. ; Waste management. ; Environmental chemistry.
    Description / Table of Contents: Chapter 1 Sources and Health Risks of Rare Earth Elements in Waters -- Chapter 2 Removal of Heavy Metal Pollutants from Wastewater Using Zerovalent Iron Nanoparticles -- Chapter 3 Water Treatment Chemicals for Pollution Minimization and Management -- Chapter 4 Advanced Treatment of Real Wastewater Effluents by Electrochemistry -- Chapter 5 Unconventional Adsorbents for Remediation of Metal Pollution in Waters -- Chapter 6 Desalination Technology for Water Security -- Chapter 7 Nanotechnology for the Remediation of Heavy Metals and Metalloids in Contaminated Water -- Chapter 8 Hybrid Treatment Technologies for the Treatment of Industrial Wastewater -- Chapter 9 Removal of Heavy Metals in Biofiltration Systems -- Chapter 10 Contamination and Health Impact of Heavy Metals -- Chapter 11 Tin-Based Compounds for Water Remediation -- Chapter 12 Methods for Treatment of Wastewater from Cu Production -- Chapter 13 Heavy Metal Removal from Wastewater Using Adsorbents -- Chapter 14 Electroanalytical Techniques for the Remediation of Heavy Metals from Wastewater -- Chapter 15 Mechanisms and Approaches for the Removal of Heavy Metals from Acid Mine Drainage and Other Industrial Effluents -- Chapter 16 Removal of Dyes and Heavy Metals with Clays and Diatomite.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XVII, 581 p. 99 illus., 68 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030524210
    Series Statement: Environmental Chemistry for a Sustainable World 53
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Environmental chemistry. ; Environmental management. ; Water. ; Waste management.
    Description / Table of Contents: Chapter 1 Pseudomonas species for the environmental cleaning of toxic heavy metals -- Chapter 2 Hardware, Hardware and Software Remediation technologies for Water Resources Pollution -- Chapter 3 Anaerobic Biotechnology for the Treatment of Pharmaceutical and Hospital Wastewaters Treatment -- Chapter 4 Bacterial metabolites for removal of toxic dyes and heavy metals -- Chapter 5 Bacterial biofilms for bioremediation of metal-contaminated aquatic environments -- Chapter 6 Laccase-mediated bioremediation of dye-based hazardous pollutants -- Chapter 7 Remediation of freshwaters contaminated by cyanobacteria -- Chapter 8 Biochemical methods for water purification -- Chapter 9 Biosorptive elimination of toxic pollutants from contaminated water -- Chapter 10 Microbial exopolymeric substances for metal removal -- Chapter 11 Bioremediation of Bisphenols and Phthalates from Industrial effluents: A Review -- Chapter 13 Potential of Tree barks and bark extracts in the Bioremediation of Heavy metals from polluted water sources: A review -- Chapter 14 Environmental Effects of Textile Dyes and Their Microbial Detoxification -- Chapter 15 Natural remediation techniques for water quality protection and restoration -- Chapter 16 Phytoextraction of heavy metals from complex industrial waste disposal sites -- Chapter 17 Biosorption of Nickel (II) and Cadmium (II) -- Chapter 18 Biological strategies for heavy metal remediation.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XV, 424 p. 52 illus., 33 illus. in color.)
    Edition: 1st ed. 2020.
    ISBN: 9783030489854
    Series Statement: Environmental Chemistry for a Sustainable World 51
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Nanostructured materials. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (491 pages)
    Edition: 1st ed.
    ISBN: 9781119651161
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Application of MOFs and Their Derived Materials in Sensors -- 1.1 Introduction -- 1.2 Application of MOFs and Their Derived Materials in Sensors -- 1.2.1 Optical Sensor -- 1.2.1.1 Colorimetric Sensor -- 1.2.1.2 Fluorescence Sensor -- 1.2.1.3 Chemiluminescent Sensor -- 1.2.2 Electrochemical Sensor -- 1.2.2.1 Amperometric Sensor -- 1.2.2.2 Impedimetric, Electrochemiluminescence, and Photoelectrochemical Sensor -- 1.2.3 Field-Effect Transistor Sensor -- 1.2.4 Mass-Sensitive Sensor -- 1.3 Conclusion -- Acknowledgments -- References -- Chapter 2 Applications of Metal-Organic Frameworks (MOFs) and Their Derivatives in Piezo/Ferroelectrics -- 2.1 Introduction -- 2.1.1 Brief Introduction to Piezo/Ferroelectricity -- 2.2 Fundamentals of Piezo/Ferroelectricity -- 2.3 Metal-Organic Frameworks for Piezo/ Ferroelectricity -- 2.4 Ferro/Piezoelectric Behavior of Various MOFs -- 2.5 Conclusion -- References -- Chapter 3 Fabrication and Functionalization Strategies of MOFs and Their Derived Materials "MOF Architecture" -- 3.1 Introduction -- 3.2 Fabrication and Functionalization of MOFs -- 3.2.1 Metal Nodes -- 3.2.2 Organic Linkers -- 3.2.3 Secondary Building Units -- 3.2.4 Synthesis Methods -- 3.2.4.1 Hydrothermal and Solvothermal Method -- 3.2.4.2 Microwave Synthesis -- 3.2.4.3 Electrochemical Method -- 3.2.4.4 Mechanochemical Synthesis -- 3.2.4.5 Sonochemical (Ultrasonic Assisted) Method -- 3.2.4.6 Diffusion Method -- 3.2.4.7 Template Method -- 3.2.5 Synthesis Strategies -- 3.3 MOF Derived Materials -- 3.4 Conclusion -- References -- Chapter 4 Application of MOFs and Their Derived Materials in Molecular Transport -- 4.1 Introduction -- 4.2 MOFs as Nanocarriers for Membrane Transport -- 4.2.1 MIL-89 -- 4.2.2 MIL-88A -- 4.2.3 MIL-100 -- 4.2.4 MIL-101 -- 4.2.5 MIL-53 -- 4.2.6 ZIF-8. , 4.2.7 Zn-TATAT -- 4.2.8 BioMOF-1 (Zn) -- 4.2.9 UiO (Zr) -- 4.3 Conclusion -- References -- Chapter 5 Role of MOFs as Electro/-Organic Catalysts -- 5.1 What Is MOFs -- 5.2 MOFs as Electrocatalyst in Sensing Applications -- 5.3 MOFs as Organic Catalysts in Organic Transformations -- 5.4 Conclusion and Future Prospects -- References -- Chapter 6 Application of MOFs and Their Derived Materials in Batteries -- 6.1 Introduction -- 6.2 Metal-Organic Frameworks -- 6.2.1 Classification and Properties of Metal-Organic Frameworks -- 6.2.2 Potential Applications of MOFs -- 6.2.3 Synthesis of MOFs -- 6.3 Polymer Electrolytes -- 6.3.1 Historical Perspectives and Classification of Polymer Electrolytes -- 6.3.2 MOF Based Polymer Electrolytes -- 6.4 Ionic Liquids -- 6.4.1 Properties of Ionic Liquids -- 6.4.2 Ionic Liquid Incorporated MOF -- 6.5 Ion Transport in Polymer Electrolytes -- 6.5.1 General Description of Ionic Conductivity -- 6.5.2 Models for Ionic Transport in Polymer Electrolytes -- 6.5.3 Impedance Spectroscopy and Ionic Conductivity Measurements -- 6.5.4 Concept of Mismatch and Relaxation -- 6.5.5 Scaling of ac Conductivity -- 6.6 IL Incorporated MOF Based Composite Polymer Electrolytes -- 6.7 Conclusion and Perspectives -- References -- Chapter 7 Fine Chemical Synthesis Using Metal-Organic Frameworks as Catalysts -- 7.1 Introduction -- 7.2 Oxidation Reaction -- 7.2.1 Epoxidation -- 7.2.2 Sulfoxidation -- 7.2.3 Aerobic Oxidation of Alcohols -- 7.3 1,3-Dipolar Cycloaddition Reaction -- 7.4 Transesterification Reaction -- 7.5 C-C Bond Formation Reactions -- 7.5.1 Heck Reactions -- 7.5.2 Sonogashira Coupling -- 7.5.3 Suzuki Coupling -- 7.6 Conclusion -- References -- Chapter 8 Application of Metal Organic Framework and Derived Material in Hydrogenation Catalysis -- 8.1 Introduction -- 8.1.1 The Active Centers in Parent MOF Materials. , 8.1.2 The Active Centers in MOF Catalyst -- 8.1.3 Metal Nodes -- 8.2 Hydrogenation Reactions -- 8.2.1 Hydrogenation of Alpha-Beta Unsaturated Aldehyde -- 8.2.2 Hydrogenation of Cinnamaldehyde -- 8.2.3 Hydrogenation of Nitroarene -- 8.2.4 Hydrogenation of Nitro Compounds -- 8.2.5 Hydrogenation of Benzene -- 8.2.6 Hydrogenation of Quinoline -- 8.2.7 Hydrogenation of Carbon Dioxide -- 8.2.8 Hydrogenation of Aromatics -- 8.2.9 Hydrogenation of Levulinic Acid -- 8.2.10 Hydrogenation of Alkenes and Alkynes -- 8.2.11 Hydrogenation of Phenol -- 8.3 Conclusion -- References -- Chapter 9 Application of MOFs and Their Derived Materials in Solid-Phase Extraction -- 9.1 Solid-Phase Extraction -- 9.1.1 Materials in SPE -- 9.2 MOFs and COFs in Miniaturized Solid-Phase Extraction (µSPE) -- 9.3 MOFs and COFs in Miniaturized Dispersive Solid-Phase Extraction (D-µSPE) -- 9.4 MOFs and COFs in Magnetic-Assisted Miniaturized Dispersive Solid-Phase Extraction (m-D-µSPE) -- 9.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 10 Anticancer and Antimicrobial MOFs and Their Derived Materials -- 10.1 Introduction -- 10.2 Anticancer MOFs -- 10.2.1 MOFs as Drug Carriers -- 10.2.2 MOFs in Phototherapy -- 10.3 Antibacterial MOFs -- 10.4 Antifungal MOFs -- References -- Chapter 11 Theoretical Investigation of Metal-Organic Frameworks and Their Derived Materials for the Adsorption of Pharmaceutical and Pe -- 11.1 Introduction -- 11.2 General Synthesis Routes -- 11.2.1 Hydrothermal Synthesis -- 11.2.2 Solvothermal Synthesis of MOFs -- 11.2.3 Room Temperature Synthesis -- 11.2.4 Microwave Assisted Synthesis -- 11.2.5 Mechanochemical Synthesis -- 11.2.6 Electrochemical Synthesis -- 11.3 Postsynthetic Modification in MOF -- 11.4 Computational Method -- 11.5 Results and Discussion. , 11.5.1 Binding Behavior Between MIL-100 With the Adsorbates (Diclofenac, Ibuprofen, Naproxen, and Oxybenzone) -- 11.6 Conclusion -- References -- Chapter 12 Metal-Organic Frameworks and Their Hybrid Composites for Adsorption of Volatile Organic Compounds -- 12.1 Introduction -- 12.2 VOCs and Their Potential Hazards -- 12.2.1 Other Sources of VOCs -- 12.3 VOCs Removal Techniques -- 12.4 Fabricated MOF for VOC Removal -- 12.4.1 MIL Series MOFs -- 12.4.2 Isoreticular MOFs -- 12.4.2.1 Adsorption Comparison of the Isoreticular MOFs -- 12.4.3 NENU Series MOFs -- 12.4.4 MOF-5, Eu-MOF, and MOF-199 -- 12.4.5 Amine-Impregnated MIL-100 -- 12.4.6 Biodegradable MOFs MIL-88 Series -- 12.4.7 Catalytic MOFs -- 12.4.8 Photo-Degradating MOFs -- 12.4.9 Some Other Studied MOFs -- 12.5 MOF Composites -- 12.5.1 MIL-101 Composite With Graphene Oxide -- 12.5.2 MIL-101 Composite With Graphite Oxide -- 12.6 Generalization Adsorptive Removal of VOCs by MOFs -- 12.7 Simple Modeling the Adsorption -- 12.7.1 Thermodynamic Parameters -- 12.7.2 Dynamic Sorption Methods -- 12.8 Factor Affecting VOCs Adsorption -- 12.8.1 Breathing Phenomena -- 12.8.2 Activation of MOFs -- 12.8.3 Applied Pressure -- 12.8.4 Relative Humidity -- 12.8.5 Breakthrough Conditions -- 12.8.6 Functional Group of MOFs -- 12.8.7 Concentration, Molecular Size, and Type of VOCs -- 12.9 Future Perspective -- References -- Chapter 13 Application of Metal-Organic Framework and Their Derived Materials in Electrocatalysis -- List of Abbreviations -- 13.1 Introduction -- 13.2 Perspective Synthesis of MOF and Their Derived Materials -- 13.3 MOF for Hydrogen Evolution Reaction -- 13.4 MOF for Oxygen Evolution Reaction -- 13.5 MOF for Oxygen Reduction Reaction -- 13.6 MOF for CO2 Electrochemical Reduction Reaction -- 13.6.1 Electrosynthesis of MOF for CO2 Reduction -- 13.6.2 Composite Electrodes as MOF for CO2 Reduction. , 13.6.3 Continuous Flow Reduction of CO2 -- 13.6.4 CO2 Electrochemical Reduction in Ionic Liquid -- 13.7 MOF for Electrocatalytic Sensing -- 13.8 Electrocatalytic Features of MOF -- 13.9 Conclusion -- Acknowledgment -- References -- Chapter 14 Applications of MOFs and Their Composite Materials in LightDriven Redox Reactions -- 14.1 Introduction -- 14.1.1 MOFs as Photocatalysts -- 14.1.2 Charge Transfer Mechanisms -- 14.1.3 Methods of Synthesis -- 14.2 Pristine MOFs and Their Application in Photocatalysis -- 14.2.1 Group 4 Metallic Clusters -- 14.2.2 Groups 8, 9, and 10 Metallic Clusters -- 14.2.3 Group 11 Metallic Clusters -- 14.2.4 Group 12 Metallic Clusters -- 14.3 Metal Nanoparticles-MOF Composites and Their Application in Photocatalysis -- 14.3.1 Ag-MOF Composites -- 14.3.2 Au-MOF Composites -- 14.3.3 Cu-MOF Composites -- 14.3.4 Pd-MOF Composites -- 14.3.5 Pt-MOF Composites -- 14.4 Semiconductor-MOF Composites and Their Application in Photocatalysis -- 14.4.1 TiO2-MOF Composites -- 14.4.2 Graphitic Carbon Nitride-MOF Composites -- 14.4.3 Bismuth-Based Semiconductors -- 14.4.4 Reduced Graphene Oxide-MOF Composites -- 14.4.5 Silver-Based Semiconductors -- 14.4.6 Other Semiconductors -- 14.5 MOF-Based Multicomponent Composites and Their Application in Photocatalysis -- 14.5.1 Semiconductor-Semiconductor-MOF Composites -- 14.5.2 Semiconductor-Metal-MOF Composites -- 14.6 Conclusions -- References -- Index -- Also of Interest -- Check out these other forthcoming and published titles from Scrivener Publishing -- EULA.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...