GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (5)
  • 2020-2024  (5)
  • 2023  (5)
Document type
Language
  • English  (5)
Years
  • 2020-2024  (5)
Year
  • 1
    Online Resource
    Online Resource
    Sharjah :Bentham Science Publishers,
    Keywords: Electronic books.
    Description / Table of Contents: Increased industrial and agricultural activity has led to the contamination of the earth's soil and groundwater resources with hazardous chemicals. The presence of heavy metals, dyes, fluorides, dissolved solids, and many other pollutants used in industry and agriculture are responsible for hazardous levels of water pollution. The removal of these pollutants in water resources is challenging. Bioremediation is a new technique that employs living organisms, usually bacteria and fungi, to remove pollutants from soil and water, preferably in situ. This approach is more cost-effective than traditional techniques, such as incineration of soils and carbon filtration of water. It requires understanding how organisms consume and transform polluting chemicals, survive in polluted environments, and how they should be employed in the field. Bioremediation for Environmental Pollutants discusses the latest research in green chemistry and practices and principles involved in quality improvement of water by remediation. It covers different aspects of environmental problems and their remedies with up-to-date developments in the field of bioremediation of industrial/environmental pollutants. Volume 1 focuses on the bioremediation of heavy metals, pesticides, textile dyes removal, petroleum hydrocarbon, microplastics and plastics. This book is invaluable for researchers and scientists in environmental science, environmental microbiology, and waste management. It also serves as a learning resource for graduate and undergraduate students in environmental science, microbiology, limnology, freshwater ecology, and microbial biotechnology.
    Type of Medium: Online Resource
    Pages: 1 online resource (519 pages)
    Edition: 1st ed.
    ISBN: 9789815123494
    Series Statement: Sustainable Materials Series ; v.2
    Language: English
    Note: Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Preface -- List of Contributors -- Microbial Remediation of Heavy Metals -- Removal of Heavy Metals using Microbial Bioremediation -- Deepesh Tiwari1, Athar Hussain2,*, Sunil Kumar Tiwari3, Salman Ahmed4, Mohd. Wajahat Sultan5 and Mohd. Imran Ahamed6 -- INTRODUCTION -- HEAVY METALS: SOURCES AND EFFECTS -- HEAVY METALS OCCURRENCES -- HEAVY METAL REMOVAL STRATEGIES -- Physical Methods -- Chemical Methods -- Biological Methods -- Phytoremediation -- Bioremediation -- Mechanism of Bioremediation -- Bioremediation by Biosorption -- Bioremediation by Bioaccumulation -- Comparison of Biosorption and Bioaccumulation Process -- Biotechnological Intervention in Bioremediation Processes by the Microbial Approach -- The Ability of Microorganisms to Bioremediate Heavy Metals -- Bacteria Remediation Capacity of Heavy Metal -- Fungi Remediation Capacity of Heavy Metal -- Remediation Capacity of Heavy Metal by Algae -- Heavy Metal Removal Using Biofilms -- Plant Approach -- Advantages of Bioremediation -- Disadvantages of Bioremediation -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Bioremediation of Heavy Metal in Paper Mill Effluent -- Priti Gupta1,* -- INTRODUCTION -- PAPER & -- PULP INDUSTRY: GLOBAL OUTLOOK ON UTILITY AND GROWTH -- PAPER & -- PULP INDUSTRY: GLOBAL OUTLOOK ON HAZARDS -- PAPER MAKING PROCESSES AND WASTEWATER GENERATION -- Debarking -- Pulping -- Mechanical Pulping -- Chemical Pulping -- Bleaching -- Washing -- Stock Preparation and Paper Making Process -- HEAVY METALS AT GLANCE -- Adverse Effect of Heavy Metal Contamination -- Soil -- Microbial Population -- Plants -- Animals -- Humans -- Remediation Technologies for the Treatment of Heavy Metal Contaminated Wastewater Effluent. , BIOREMEDIATION: AN INNOVATIVE AND USEFUL APPROACH -- Industrial by-Products -- Agricultural Wastes -- Phytoremediation Methods and its Types -- Microbial Biosorbents -- MICROBIAL BIOREMEDIATION METHODS -- Biosorption -- How Does Biosorption Works? -- Important Factors Governing Biosorption Mechanism -- Types of Biosorption -- Examples of Efficient Biosorbents -- Advantages -- Biotransformation -- Bioaccumulation -- Bioleaching -- FACTORS AFFECTING MICROBIAL REMEDIATION OF HEAVY METALS -- CHALLENGES -- CONCLUSION AND FUTURE ASPECTS -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Bioremediation of Pesticides -- Praveen Kumar Yadav1,2,*, Kamlesh Kumar Nigam3, Shishir Kumar Singh2,4, Ankit Kumar5 and S. Swarupa Tripathy1 -- INTRODUCTION -- Pesticides -- Bioremediation of Pesticides -- Type of Bioremediation -- In-situ Bioremediation -- Ex-situ Bioremediation -- Aerobic Bioremediation -- Anaerobic Bioremediation -- Mycodegradation of Pesticides -- Mycodegradation of Pesticides -- Bacterial Degradation of Pesticides -- Mechanisms Involved in Bioremediation -- Genetic Modification in Bioremediation Tools -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Biosurfactants for Biodégradation -- Telli Alia1,* -- INTRODUCTION -- BIOSURFACTANTS -- Definition and Importance -- Surface Activity -- Critical Micelle Concentration (CMC) -- Hydrophile-lipophile Balance -- Emulsion Stability -- Classification, Properties and Applications of Biosurfactants -- APPLICATION OF BIOSUFACTANT IN BIODEGRADATION -- Biodegradation of Crude Oil and Petroleum Wastes -- Removal and Detoxification of Heavy Metals -- Biodegradation of Pesticides -- Biodegradation of Organic Dyes -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES. , Potential Application of Biological Treatment Methods in Textile Dyes Removal -- Rustiana Yuliasni1, Bekti Marlena1, Nanik Indah Setianingsih1, Abudukeremu Kadier2,3,*, Setyo Budi Kurniawan4, Dongsheng Song2,5 and Peng-Cheng Ma2,3 -- INTRODUCTION -- HISTORY AND CLASSIFICATION OF DYES -- History of Textile Dyes -- Classification of Dyes Based on Industrial Application -- Direct Dyes -- Disperse Dyes -- Vat Dyes -- Basic Dyes -- Acid Dyes -- Sulphur Dyes -- Azo Dyes -- Reactive Dyes -- Dyes Classification Based on Chromophores -- ENVIRONMENTAL CONCERN RELATED TO DYES -- DYES REMOVAL TECHNIQUES -- BIODEGRADATION MECHANISMS OF DYES -- Biosorption -- Bioaccumulation -- Biodegradation -- FUTURE PROSPECTS FOR APPLICATION -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Fungal Bioremediation of Pollutants -- Evans C. Egwim1,*, Oluwafemi A. Oyewole2 and Japhet G. Yakubu2 -- INTRODUCTION -- Pollutants and Their Classification -- Petroleum Hydrocarbons -- Heavy Metals -- Chemical Pollutants -- Synthetic Pesticides -- Industrial Dyes -- Pharmaceutical Products -- Effects of Pollutants in the Soil -- Effects of Pollutants in the Aquatic Environment -- Effects of Pollutants in the Air -- Bioremediation -- Bioremediation Techniques -- Biosparging -- Bioventing -- Bioaugmentation -- Biostimulation -- Ex situ -- Solid Phase -- Land Farming -- Composting -- Biopiles -- Slurry Phase -- Fungi -- Mycoremediation -- White Rot Fungi -- Enzyme System of WRF -- Lignin Peroxidase -- Manganese Peroxidase -- Versatile Peroxidase -- Laccase -- Cytochrome P450s Monooxygenase -- Mycoremediation of Pollutants -- Mycoremediation of Petroleum Hydrocarbons -- Mycoremediation of Dyes -- Mycoremediation of Pesticides -- Mycoremediation of Pharmaceutical Products -- Mycoremediation of Heavy Metal -- Advantages of Mycoremediation. , Limitations of Mycoremediation -- Nutrients -- Bioavailability of Pollutants -- Temperature -- Effects of pH -- Relative Humidity -- Toxicity of Pollutants -- Oxygen -- Moisture Content -- Presence of Contaminants -- CONCLUSION AND FUTURE PERSPECTIVE -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES -- Antifouling Nano Filtration Membrane -- Sonalee Das1,* and Lakshmi Unnikrishnan1 -- INTRODUCTION -- MEMBRANE FOULING -- Classification of Membrane Fouling -- Mechanism of Membrane Fouling -- Factors Affecting Membrane Fouling -- NANOFILTRATION MEMBRANES -- Mechanism of Action -- Characterization of NF Membranes -- Industrial Applications -- Challenges in NF Membranes -- Membrane Fouling -- Separation Between the Solutes -- Post-treatment of Concentrates -- Chemical Resistance -- Insufficient Rejection in Water Treatment -- Need for Modelling & -- Simulation Tools -- ANTIFOULING NANOFILTRATION (AF-NF) MEMBRANES -- Recent Progress in the Fabrication of Anti-Fouling Nanofiltration (NF) Membranes -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- Microbes and their Genes involved in Bioremediation of Petroleum Hydrocarbon -- Bhaskarjyoti Gogoi1, Indukalpa Das1, Shamima Begum1, Gargi Dutta1, Rupesh Kumar1 and Debajit Borah1,* -- INTRODUCTION -- TYPES OF BIOREMEDIATION STRATEGIES -- PHYSICAL METHOD FOR BIOREMEDIATION OF PETROLEUM HYDROCARBON -- CHEMICAL METHOD FOR BIOREMEDIATION OF PETROLEUM HYDROCARBON -- BIOLOGICAL METHODS -- EX-SITU BIOREMEDIATION -- In Situ Bioremediation -- Microbial Bioremediation Method -- ROLE OF BIOSURFACTANTS IN PETROLEUM HYDROCARBON DEGRADATION -- ROLE OF MICROBIAL ENZYMES AND RESPONSIBLE GENES IN HYDROCARBON DEGRADATION -- FACTORS AFFECTING BIOREMEDIATION OF PETROLEUM HYDROCARBONS -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST. , ACKNOWLEDGEMENT -- REFERENCES -- Application and Major Challenges of Microbial Bioremediation of Oil Spill in Various Environments -- Rustiana Yuliasni1, Setyo Budi Kurniawan2, Abudukeremu Kadier3,4,*, Siti Rozaimah Sheikh Abdullah2, Peng-Cheng Ma3,4, Bekti Marlena1, Nanik Indah Setianingsih1, Dongsheng Song3,5 and Ali Moertopo Simbolon1 -- INTRODUCTION -- NATURE AND COMPOSITION OF PETROLEUM CRUDE OIL -- BIOREMEDIATION AGENTS -- Bacteria as Bioremediation Agents of Hydrocarbon Contaminated Environment -- Fungal Bioremediation of Hydrocarbon Contaminated Environment -- Algae as Bioremediation Agent of Hydrocarbon Contaminated Environment -- Commercialized Product of Microbial Agents for Hydrocarbon Remediation -- APPLICATION STRATEGIES AND PRACTICES -- In-situ Bioremediation -- Ex-situ Bioremediation -- FACTOR AFFECTING BIOREMEDIATION -- Temperature -- Substances Bioavailability -- Oxygen or Alternate Electron Acceptors -- Nutrients -- MATRICES TO BE REMEDIATED -- Soil Bioremediation -- Water Bioremediation -- Sludge Bioremediation -- CONCLUSION AND FUTURE CHALLENGES -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES -- Bioremediation of Hydrocarbons -- Grace N. Ijoma1, Weiz Nurmahomed1, Tonderayi S. Matambo1, Charles Rashama1 and Joshua Gorimbo1,* -- INTRODUCTION -- Hydrocarbon Pollution Effects on Macrobiota -- Hydrocarbon Pollution Effects on Microbiota -- The Fate of Hydrocarbon Pollution in the Environment -- Weathering, Physical and Chemical Interactions with the Terrestrial Environment -- Weathering, Physical and Chemical Interactions within the Terrestrial Environment -- Reasons for Hydrocarbon Recalcitrance to Biodegradation -- Ecotoxicology: Consortia Stress Responses, Tolerance and Adaptation -- Rate-limiting Nutrients: Changes in Nitrogen Flux -- Changes in Microbial Population Dynamics. , Microbial Consortia Interactions Employed in the Degradation of Hydrocarbons.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book focuses on the applications of ion exchange resins in processes.
    Type of Medium: Online Resource
    Pages: 1 online resource (175 pages)
    Edition: 1st ed.
    ISBN: 9781644902219
    Series Statement: Materials Research Foundations Series ; v.137
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Applications of Ion Exchange Resins in Protein Separation and Purification -- 1. Introduction -- 2. Types of ion exchange resins -- 3. Functionalization of ion exchange resin -- 4. Characterization of ion exchange resin -- 4.1 Elemental analysis -- 4.2 FT-IR spectra -- 4.3 Thermogravimetric analysis -- 5. Analysis of variables for protein IEC -- 5.1 Stability and pI of proteins -- 5.2 Effect of the support on the chromatographic separation of proteins -- 5.3 Effect of buffer and mobile phase -- 6. Steps of protein separation by IEC -- 7. Types of protein purified by IEC -- 8. Future prospects of IEC -- Acknowledgments -- References -- 2 -- Applications of Ion Exchange Resins in Vitamins Separation and Purification -- 1. Introduction -- 2. Importance of vitamins -- 3. Categorisation of vitamins -- 3.1 Water soluble vitamins -- 3.2 Fat soluble vitamins -- 4. Origin of vitamins -- 5. Isolation and purgation of vitamin -- 6. Ion-exchange chromatography -- 7. Ion exchange chromatographic isolation and purgation of vitamin K1 -- 8. Ion exchange chromatographic isolation and purgation of vitamin C -- 9. Ion exchange chromatographic isolation and purgation of vitamin B1, vitamin B2 and vitamin B6 -- Conclusion -- References -- 3 -- Application of Ion Exchange Resins in Protein Separation and Purification -- 1. Basic principle of protein separation and purification by chromatographic method -- 2. Chromatographic methods of protein purification -- 2.1 Gel filtration or permeation chromatography -- 2.2 Affinity chromatography -- 2.3 Immuno affinity chromatography -- 2.4 Metal chelate chromatography -- 2.5 Other Chromatographic techniques -- 3. Principle of separation of proteins by ion exchange chromatography -- 4. Strong and weak ion exchange resin -- 5. Choice of buffer. , 6. Experimental procedure of ion exchange resin -- 6.1 Equilibration -- 6.2 Sample Application and Wash -- 6.3 Elution -- 6.4 Regeneration -- 7. Morphology of ion exchange resin -- 7.1 Capacity of ion exchange resin -- 7.2 Stability -- 7.3 Cross linking of resins -- 7.4 Donnan equilibrium -- 8. Parameters for optimisation of ion exchange methods -- 8.1 Resolution -- 8.2 Efficiency -- 8.3 Selectivity -- Summary -- References -- 4 -- Ion Exchange Resins for Selective Separation of Toxic Metals -- 1. Introduction -- 2. Ion exchange resins (IERs) -- 3. Type of IERs -- 4. Synthesis of IERs -- 5. Uses of IERs -- 6. Activity of IERs -- 7. Properties of IERs -- 7.1 IE capacity of resin -- 7.2 Water retention capacity of ion exchange resin -- 7.3 Density of ion exchange resin -- 7.4 Surface area of ion exchange resin -- 7.5 Regeneration of ion exchange resin -- 8. Selectivity of IERs -- 9. Toxic metals -- 10. Selective separation of toxic metals -- 11. Modern ion exchange separation method in industry and its future prospects -- Conclusion -- References -- 5 -- Separation and Purification of Bioactive Molecules by Ion Exchange -- 1. Introduction -- 1.1 Reversed phase chromatography -- 2. Polymeric sorbents for preparative chromatography of biologically active compounds -- 2.1 Designing a biochemical purification -- 3. Ion-exchange separation and purification of polyphenols -- 3.1 Separation of bioactive catechin derivatives by AEC -- 4. Ion-exchange separation and purification of protein -- 5. Use of ion-exchange chromatography for the separation of peptide -- 5.1 Separation of human C-peptide by ion exchange -- 6. Separation of Alkaloids from Chinese Medicines by ion-exchange -- 7. Separation of plasmid DNA using ion-exchange chromatography -- 8. Separation of carbohydrates from seaweed using ion-exchange chromatography -- 9. Future Prospects -- References. , 6 -- Ion Exchange Resins as Carriers for Sustained Drug Release -- 1. Introduction -- 2. Principles of sustained drug release -- 2.1 Evolution of sustained drug delivery systems -- 2.2.1 First-generation delivery systems -- 2.2.2 Second-generation delivery systems -- 2.2.3 Third/ Next generation delivery systems -- 3. Types of sustained drug delivery systems -- 3.1 Diffusion-controlled system -- 3.1.1 Reservoir system -- 3.1.2 Matrix system -- 3.2 Osmotic system -- 3.3 Floating system -- 3.4 Bioadhesive system -- 3.5 Liposome system -- 4. IERs as drug delivery systems -- 4.1 Chemistry of IERs -- 4.2. Complexation of IER and the drug -- 4.2.1 Selection of the drug -- 4.2.2 Purification of resins -- 4.2.3 Drug loading -- 4.2.3.1 Batch method -- 4.2.3.2 Column method -- 4.2.4 Factors affecting drug loading -- 4.2.4.1 Particle size -- 4.2.4.2 Porosity and swelling -- 4.2.4.3 Available capacity -- 4.2.4.4 Acid-base strength -- 4.2.5 Evaluation of drug resinates -- 5. Modified resinates -- 6. Release kinetics of drugs complexed with IERs -- 7. Efficiency of IERs as the delivery mechanism -- 7.1 Oral drugs -- 7.2 Nasal drugs -- 7.3 Ophthalmic drugs -- 7.4 Oro-dispersible films (ODF) -- 7.5 Oral liquid suspensions -- 8. Commercial IERs used in sustained drug delivery -- 8.1 Dowex 50W -- 8.2 Indion 244 -- 8.3 Amberlite IRP-69 -- 9. Future perspectives -- References -- 7 -- Ion Exchange Resins for Clinical Applications -- 1. Introduction -- 2. Application of resins in formulation-related issues -- 2.1 Taste development -- 2.2 Aiding in dissolution -- 2.3 Role as disintegrating agents -- 2.4 Drug stabilization -- 2.5 Water purification for the production of pharmaceuticals -- 2.6 Anti-deliquescence -- 3. Applications in drug release systems -- 3.1 Simple resinates -- 3.2 Microencapsulated resinates -- 3.3 Hollow fiber system -- 3.4 Gastric retentive system. , 3.5 Sigmoidal release system -- 4. Applications in targeted drug delivery -- 4.1 Oral drug delivery -- 4.2 Nasal drug delivery -- 4.3 Transdermal drug delivery -- 4.4 Ophthalmic drug delivery -- 4.5 Application in cancer treatment -- 5. Applications in therapeutics -- 5.1 High cholesterol treatment -- 5.2 Application in treatment of pruritus -- 5.3 Applications in treating of oedema -- 5.4 Application in the treatment of cardiac oedema -- 5.5 Applications as antacids -- 5.6 Treating uremia -- Conclusion -- References -- 8 -- Applications of Ion Exchange Resins in Water Softening -- 1. Introduction -- 2. Water hardness -- 2.1 Salts providing hardness -- 2.2 Negative effect of water hardness -- 3. Ion exchange resins for water softening -- 3.1 Strongly acidic resins -- 3.2 Weakly acidic resins -- 3.3 Polymer-inorganic resins -- 4. Regeneration of ion exchange resins and their fouling -- 5. Ion exchange in a combination with other processes -- 5.1 Ion exchange and ultrasound -- 5.2 Ion exchange and electrodialysis -- Conclusions -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Nanotechnology-Health aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (446 pages)
    Edition: 1st ed.
    ISBN: 9780323951722
    DDC: 615.1
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book is concerned with the use of Artificial Intelligence in the discovery, production and application of new engineering materials.
    Type of Medium: Online Resource
    Pages: 1 online resource (147 pages)
    Edition: 1st ed.
    ISBN: 9781644902530
    Series Statement: Materials Research Foundations Series ; v.147
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Artificial Intelligence Nano-Robots -- 1. Introduction -- 2. Composites -- 2.1 Liquid crystal elastomers -- 2.2 Shape memory polymers -- 2.3 Hydrogels -- 2.4 CNT actuators -- 2.5 Conducting polymers -- 3. Components and materials -- 4. Movement in nanorobots -- 5. Mechanism and stimulation -- 6. Trust dimensions -- 6.1 Reliability and safety -- 6.2 Explainability and interpretability -- 6.3 Privacy and security -- 6.4 Performance and robustness -- 7. Actuators -- 7.1 Thermally responsive actuators -- 7.2 Photo-responsive actuators -- 7.3 Magnetically responsive actuators -- 7.4 Electrically responsive actuators -- 8. Applications -- 8.1 Cancer detection and its treatment -- 8.2 Nanorobots in the diagnosis and treatment of diabetes -- 8.3 Artificial oxygen carrier nanorobot -- 9. Future challenges -- Conclusion and future scope -- Conflict of interest -- Acknowledgment -- References -- 2 -- Data Mining in Material Science -- 1. Introduction -- 2. Machine learning and materials science -- 3. ML algorithms in materials science -- 4. Steps in machine learning for materials science -- 4.1 Experience -- 4.2 Task -- 4.3 Classification -- 4.4 Regression -- 4.5 Clustering -- 4.6 Dimension reduction and conception -- 4.7 Efficient searching -- 4.8 Performance measure -- 4.9 Model particulars -- 4.10 Supervised model -- Conclusion -- References -- 3 -- Artificial Intelligence Applications in Solar Photovoltaic Renewable Energy Systems -- 1. Introduction -- 1.1 Overview of Solar PV Renewable Energy System and Artificial Intelligence (AI) Technology -- 1.2 Solar energy generation -- 1.3 Classification of solar energy technologies (SET) -- 1.3.1 Concentrated solar-thermal power (CSP) -- 1.3.2 Solar photovoltaic energy -- 2. Artificial intelligence (AI) -- 2.1 Machine learning -- 2.2 Deep learning. , 2.2.1 Convolutional neural networks (CNNs) -- 2.2.2 Long short-term memory (LSTM) -- 2.2.3 Generative adversarial network (GAN) -- 3. Application of AI in solar PV system -- 3.1 Monitoring of PV systems -- 3.2 PV fault detection and diagnosis (FDD) methods -- 3.3 Employment of AI technologies for sizing PV systems -- 3.4 Modelling of a solar PV generator -- 3.5 Solar water heating systems (SWHs) -- 4. Challenges of effective AI application in solar PV system -- 4.1 Solar energy optimization -- 4.2 PV-dependent hybrid facility optimization -- 4.3 External factors of solar energy generation -- 4.4 Challenges in the development of solar energy systems -- 4.5 Solar energy transformation -- 5. Prospects and future work consideration -- Conclusion -- References -- 4 -- Artificial Intelligence in Material Genomics -- 1. Introduction -- 2. Material genomics -- 3. Strength of artificial intelligence -- 4. Artificial intelligence in material genomics -- Conclusion -- References -- 5 -- Applications of Artificial Intelligence in Polymer Manufacturing -- 1. Introduction -- 1.1 Advantages and disadvantages of artificial intelligence in polymer manufacturing -- 2. Classification of artificial intelligence -- 2.1 Classification of AI based on capabilities -- 3. Key Developments and commercialization in the polymer industry -- 4. Application of artificial intelligence in polymer manufacturing -- 4.1 Artificial intelligence and polymer manufacturing -- 4.2 Biodegradable polymers and artificial intelligence -- 4.3 Artificial intelligence and packaging industries -- 4.4 Agriculture and artificial intelligence -- 4.5 Healthcare and artificial intelligence -- 4.6 Artificial intelligence and dentistry -- 4.7 Food industry and artificial intelligence -- 4.8 Cosmetic artificial intelligence -- 5. Future prospects and conventional challenges. , 6. Guidelines, rules, and regulations for polymeric manufacturing -- Conclusion -- Acknowledgment -- Conflict of Interest -- Reference -- 6 -- Artificial Intelligence for Energy Conversion -- 1. Introduction -- 2. Alternative sources of energy and artificial intelligence -- 3. Machine learning and its application in material sciences -- 4. Limitation of principled method and how ML can intervene -- 5. Applications of AI in the domain of energy conversions -- 5.1 AI in photonics -- 5.2 AI in electrochemical catalyst -- 5.3 AI in electrolysis -- 5.4 AI in fuel cell technology -- Conclusions -- Acknowledgments -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: Perovskite supercapacitors have a promising future in the area of energy storage; due to their superior optoelectronic characteristics, simple device construction and increased efficiency.
    Type of Medium: Online Resource
    Pages: 1 online resource (186 pages)
    Edition: 1st ed.
    ISBN: 9781644902738
    Series Statement: Materials Research Foundations Series ; v.151
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Organic-Inorganic Perovskite Based Solar Cells -- 1. Introduction -- 2. Silicon Solar Cells (SSCs) -- 3. Perovskites-Based Solar Cells (PSCs) -- 3.1 Structure of PSCs -- 3.2 Optoelectronic Properties Of PSCs -- 3.3 Influence of A, B, and X site -- 3.3.1 A-Site -- 3.3.2 B-Site -- 3.3.3 X-Site -- 4. Mixed Concentration of Perovskite Absorbing Layer -- 4.1 A-site -- 4.4 Mixed B-Sites Cations -- 4.5 X-Site -- 5. Requirements for Each Layer -- 5.1 Electron Transport Layer -- 5.1.1 Different ETL Material Used In Perovskite Cells -- 5.2 Hole Transporting Layer -- 5.2.1 Hole Transporting Material (HTM) -- 5.2.2 Inorganic P-type semiconductors as HTMs -- 5.2.3 Organometallic HTMs -- 5.3 Absorbing Layer -- 5.3.1 Preparation Method of The Perovskite Light Absorbing Layer -- 6. Fabrication Techniques -- 6.1 One-Step Deposition -- 6.2 Two-Step Deposition -- 6.3 Vapor Deposition Method -- 6.4 Spin Coating -- 6.4.1 One-Step Spin Coating -- 6.4.2 Two-Step Spin Coating -- 6.5 Thermal Vapor Deposition -- 7. Challenges in Perovskite-Based Solar Cells -- 7.1 Stability Challenges -- 7.2 Thermal Effect -- 7.3 Toxicity -- 7.4 J-V Hysteresis -- 8. Efficiency of Perovskite -- 9. Future Perspectives -- Conclusion -- References -- 2 -- Organometallic Halides-Based Perovskite Solar Cells -- 1. Introduction -- 1.1 Carbon-based energy sources -- 1.2 The global trend toward renewable energy resources -- 1.3 Era of Solar Cell (SCs) technology -- 1.4 Green energy (Carbon free) -- 2. Photovoltaic effect -- 2.1 Discovery of Sir Alexander Edmond Becquerel -- 2.2 Development of solar cells -- 2.3 Generations -- 2.4 Types of 3rd generation of SCs -- 3. Perovskite-based solar cells -- 3.1 Introduction to perovskite compounds -- 3.2 Classification of perovskite -- 3.3 Organometallic halide-based perovskite (OMHP) solar cells. , 3.4 Evolutionary history of perovskite solar cells with their efficiency -- 3.4.1 Open-circuit voltage (OCV) -- 3.4.2 Short-circuit voltage (Jsc) -- 3.4.3 Fill factor (FF) -- 3.5 Crystal structure of organometallic halides-based perovskite solar cells -- 3.6 Behavior of OMHP with different combinations of A, B, and X -- 3.6.1 A-site cations -- 3.6.2 B-site cations -- 3.6.3 X-site anions -- 3.6.3.1 Iodide (I) anion -- 3.6.3.2 Chloride (Cl) anion -- 3.6.3.3 Bromide (Br) anion -- 3.7 Goldschmidt tolerance factor ( ) -- 3.8 Octahedral factor (OF) -- 4. Important Parameters of Organometallic Halide-Based Perovskite (OMHP) -- 4.1 Charge transport (CT) -- 4.2 Diffusion length and mobility of charge carriers -- 4.3 Electronic structure (ES) -- 4.4 Effect of effective masses of holes and electron carriers -- 5. Environmental instability of organometallic halides-based perovskites (OMHPs) solar cells -- 5.1 Degradation and stability issue -- 5.2 Effect of moisture -- 5.3 Effect of temperature -- 5.4 Effect of oxygen and light -- 6. Recent development in the OMHP solar cells -- 6.1 Ion migration and the suppression of ions -- 6.2 Solvent engineering -- 6.3 Annealing -- 6.4 2D/3D technology -- 6.5 Organometallic halides-based perovskite quantum dot solar cells -- 6.6 Solid-state hole conductor-free (HCF) OMHP-SCs -- 6.7 Tandem perovskite solar cells (TPSCs) -- 6.8 Passivation of OMHP-SCs -- Conclusion -- References -- 3 -- Perovskite Based Ferroelectric Materials for Energy Storage Devices -- 1. Introduction -- 2. Ferroelectricity -- 3. Ferroelectric Perovskites -- 4. Lead-Based Perovskite Ferroelectrics -- 4.1 Niobate-Based Ferroelectrics -- 4.2 Lanthanum Based Ferroelectrics -- 4.3 Lead-Free Perovskite Ferroelectrics -- 4.3.1 Barium Titanate Based Ferroelectric -- 4.3.2 Alkaline Niobate Based Ferroelectric -- 4.3.3 Bismuth Based Ferroelectrics. , 5. Energy Storage Devices -- 5.1 Types of Energy Storage Devices -- 5.1.1 Battery Energy Storage -- 5.1.2 Thermal Energy Storage -- 5.1.3 Pumped Hydroelectric Energy Storage -- 5.1.4 Mechanical Energy Storage -- 5.1.5 Hydrogen Energy Storage -- 6. Transport Properties -- 7. Energy Density of Ferroelectrics -- 7.1 Ways to Improve Energy Density -- 7.1.1 Chemical Substitution -- 8. High Energy Efficiency Perovskite Solar Cells -- 9. Ferroelectrics for Energy Storage Devices -- 9.1 Fuel Cells -- 9.2 Photocatalysts -- 9.2.1 Characterization and Preparation of Photo Catalysts -- 9.3 Capacitive Energy Storage Devices -- Conclusion -- References -- 4 -- Techniques for Recycling and Recovery of Perovskites Solar Cells -- 1. Introduction -- 1.1 Recycling Roadmap -- 1.2 Delamination of perovskite solar cell modules -- 3. Need of recycling -- 3.1 Degradation of perovskite solar cells -- 3.2 Use of expensive raw materials -- 3.3 Toxicity behavior of lead -- 4. Recycling of several parts of perovskite solar cells -- 4.1 Recycling of transparent conducting oxide (TCO) -- 4.2 Recycling of Electron Transport Layer (ETL) -- 4.3 Recycling of toxic lead component -- 4.4 Recycling of metal electrodes -- 4.5 Recycling of monolithic structure -- 5. Future challenges -- 6. Analysis of cost -- Conclusion and future perspective -- Conflict of interest -- Acknowledgment -- References -- 5 -- Lead-Free Perovskite Solar Cells -- 1. Introduction -- 2. Categories of Lead-Free Perovskite Solar Cells (PSCs) -- 2.1 Tin-Based PSCs -- 2.2 Germanium-Based PSCs -- 2.3 Antimony and bismuth-based PSCs -- 2.4 Halide double perovskites (HDPs) -- 3. Improvement Scopes in Lead-Free PSCs -- 3.1 Photovoltaic Efficiency -- 3.2 Stability -- 3.3 Defect Parameter Characterization and Defect Tolerance -- 3.4 Charge Transport Characterization -- 3.5 Electronic Dimensionality. , 4. Processing of High-Quality Lead-Free Perovskite Films -- 4.1 Vapour deposition method -- 4.2 Anti-Solvent Technique -- 4.3 Solution Processing -- 4.4 Two-Step Deposition -- 4.5 Low Pressure Assisted Solution Processing -- 4.6 Spin Coating -- 4.7 Inter-diffusion Method -- 4.8 Doctor Blade Coating -- 4.9 Vacuum Flash-Assisted Solution Process (VASP) -- 4.10 Complex Assisted Gas Quenching (CAGQ) method -- 4.11 Soft Cover Deposition (SCD) -- Conclusion and outlook -- References -- 6 -- Technical Potential Evaluation of Inorganic Tin Perovskite Solar Cells -- 1. Introduction -- 2. Inorganic tin perovskite solar cells parameters used in AHP analysis -- 3. AHP Methodology -- 4. Results and discussion -- Conclusions -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...