GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 14 ( 2014-04-08), p. 5100-5105
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 14 ( 2014-04-08), p. 5100-5105
    Abstract: The Indo-Pacific warm pool houses the largest zone of deep atmospheric convection on Earth and plays a critical role in global climate variations. Despite the region’s importance, changes in Indo-Pacific hydroclimate on orbital timescales remain poorly constrained. Here we present high-resolution geochemical records of surface runoff and vegetation from sediment cores from Lake Towuti, on the island of Sulawesi in central Indonesia, that continuously span the past 60,000 y. We show that wet conditions and rainforest ecosystems on Sulawesi present during marine isotope stage 3 (MIS3) and the Holocene were interrupted by severe drying between ∼33,000 and 16,000 y B.P. when Northern Hemisphere ice sheets expanded and global temperatures cooled. Our record reveals little direct influence of precessional orbital forcing on regional climate, and the similarity between MIS3 and Holocene climates observed in Lake Towuti suggests that exposure of the Sunda Shelf has a weaker influence on regional hydroclimate and terrestrial ecosystems than suggested previously. We infer that hydrological variability in this part of Indonesia varies strongly in response to high-latitude climate forcing, likely through reorganizations of the monsoons and the position of the intertropical convergence zone. These findings suggest an important role for the tropical western Pacific in amplifying glacial–interglacial climate variability.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 346, No. 6214 ( 2014-12-05), p. 1223-1227
    Abstract: Much of equatorial Africa suddenly became much wetter ∼14,700 years ago, ushering in an “African Humid Period” that continued well into the Holocene. Why? Otto-Bliesner et al. use a climate model to show that a reduction in the Atlantic Meridional Overturning Circulation (AMOC) at the beginning of the last deglaciation caused a reduction in precipitation in northern and southeastern equatorial Africa. When the AMOC became stronger again, wetter conditions developed in response to a combination of increasing greenhouse gas concentrations and strong summer sun. As atmospheric greenhouse gas concentrations continue to increase, these results may have implications for the future of African hydroclimate, water resources, and agriculture. Science , this issue p. 1223
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2014
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...