GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (42)
  • Biodiversity Research  (42)
Material
Publisher
  • American Society for Microbiology  (42)
Language
FID
  • Biodiversity Research  (42)
Subjects(RVK)
  • 1
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 84, No. 9 ( 2018-05)
    Abstract: The structural variation of the bacterial community associated with particulate matter (PM) was assessed in an urban area of Beijing during hazy and nonhazy days. Sampling for different PM fractions (PM 2.5 [ 〈 2.5 μm], PM 10 [ 〈 10 μm], and total suspended particulate) was conducted using three portable air samplers from September 2014 to February 2015. The airborne bacterial community in these samples was analyzed using the Illumina MiSeq platform with bacterium-specific primers targeting the 16S rRNA gene. A total of 1,707,072 reads belonging to 6,009 operational taxonomic units were observed. The airborne bacterial community composition was significantly affected by PM fractions ( R = 0.157, P 〈 0.01). In addition, the relative abundances of several genera significantly differed between samples with various haze levels; for example, Methylobacillus , Tumebacillus , and Desulfurispora spp. increased in heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature, SO 2 concentration, relative humidity, PM 10 concentration, and CO concentration were significant factors that associated with airborne bacterial community composition. Only six genera increased across PM 10 samples ( Dokdonella , Caenimonas , Geminicoccus , and Sphingopyxis ) and PM 2.5 samples ( Cellulomonas and Rhizobacter ), while a large number of taxa significantly increased in total suspended particulate samples, such as Paracoccus , Kocuria , and Sphingomonas . Network analysis indicated that Paracoccus , Rubellimicrobium , Kocuria , and Arthrobacter were the key genera in the airborne PM samples. Overall, the findings presented here suggest that diverse airborne bacterial communities are associated with PM and provide further understanding of bacterial community structure in the atmosphere during hazy and nonhazy days. IMPORTANCE The results presented here represent an analysis of the airborne bacterial community associated with particulate matter (PM) and advance our understanding of the structural variation of these communities. We observed a shift in bacterial community composition with PM fractions but no significant difference with haze levels. This may be because the bacterial differences are obscured by high bacterial diversity in the atmosphere. However, we also observed that a few genera (such as Methylobacillus , Tumebacillus , and Desulfurispora ) increased significantly on heavy-haze days. In addition, Paracoccus , Rubellimicrobium , Kocuria , and Arthrobacter were the key genera in the airborne PM samples. Accurate and real-time techniques, such as metagenomics and metatranscriptomics, should be developed for a future survey of the relationship of airborne bacteria and haze.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2021
    In:  Applied and Environmental Microbiology Vol. 87, No. 20 ( 2021-09-28)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 87, No. 20 ( 2021-09-28)
    Abstract: Arsenic (As) metabolism genes are generally present in soils, but their diversity, relative abundance, and transcriptional activity in response to different As concentrations remain unclear, limiting our understanding of the microbial activities that control the fate of an important environmental pollutant. To address this issue, we applied metagenomics and metatranscriptomics to paddy soils showing a gradient of As concentrations to investigate As resistance genes ( ars ) including arsR , acr3 , arsB , arsC , arsM , arsI , arsP , and arsH as well as energy-generating As respiratory oxidation ( aioA ) and reduction ( arrA ) genes. Somewhat unexpectedly, the relative DNA abundances and diversities of ars , aioA , and arrA genes were not significantly different between low and high (∼10 versus ∼100 mg kg −1 ) As soils. Compared to available metagenomes from other soils, geographic distance rather than As levels drove the different compositions of microbial communities. Arsenic significantly increased ars gene abundance only when its concentration was higher than 410 mg kg −1 . In contrast, metatranscriptomics revealed that relative to low-As soils, high-As soils showed a significant increase in transcription of ars and aioA genes, which are induced by arsenite, the dominant As species in paddy soils, but not arrA genes, which are induced by arsenate. These patterns appeared to be community wide as opposed to taxon specific. Collectively, our findings advance understanding of how microbes respond to high As levels and the diversity of As metabolism genes in paddy soils and indicated that future studies of As metabolism in soil or other environments should include the function (transcriptome) level. IMPORTANCE Arsenic (As) is a toxic metalloid pervasively present in the environment. Microorganisms have evolved the capacity to metabolize As, and As metabolism genes are ubiquitously present in the environment even in the absence of high concentrations of As. However, these previous studies were carried out at the DNA level; thus, the activity of the As metabolism genes detected remains essentially speculative. Here, we show that the high As levels in paddy soils increased the transcriptional activity rather than the relative DNA abundance and diversity of As metabolism genes. These findings advance our understanding of how microbes respond to and cope with high As levels and have implications for better monitoring and managing an important toxic metalloid in agricultural soils and possibly other ecosystems.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 85, No. 14 ( 2019-07-15)
    Abstract: Candida albicans and Cryptococcus neoformans , human-pathogenic fungi found worldwide, are receiving increasing attention due to high morbidity and mortality in immunocompromised patients. In the present work, 110 fungus pairs were constructed by coculturing 16 wood-decaying basidiomycetes, among which coculture of Trametes robiniophila Murr and Pleurotus ostreatus was found to strongly inhibit pathogenic fungi through bioactivity-guided assays. A combination of metabolomics and molecular network analysis revealed that 44 features were either newly synthesized or produced at high levels in this coculture system and that 6 of the features that belonged to a family of novel and unusual linear sesterterpenes contributed to high activity with MICs of 1 to 32 μg/ml against pathogenic fungi. Furthermore, dynamic 13 C-labeling analysis revealed an association between induced features and the corresponding fungi. Unusual sesterterpenes were 13 C labeled only in P. ostreatus in a time course after stimulation by the coculture, suggesting that these sesterterpenes were synthesized by P. ostreatus instead of T. robiniophila Murr. Sesterterpene compounds 1 to 3 were renamed postrediene A to C. Real-time reverse transcription-quantitative PCR (RT-qPCR) analysis revealed that transcriptional levels of three genes encoding terpene synthase, farnesyl-diphosphate farnesyltransferase, and oxidase were found to be 8.2-fold, 88.7-fold, and 21.6-fold higher, respectively, in the coculture than in the monoculture, indicating that biosynthetic gene cluster 10 was most likely responsible for the synthesis of these sesterterpenes. A putative biosynthetic pathway of postrediene A to postrediene C was then proposed based on structures of sesterterpenes and molecular network analysis. IMPORTANCE A number of gene clusters involved in biosynthesis of secondary metabolites are presumably silent or expressed at low levels under conditions of standard laboratory cultivation, resulting in a large gap between the pool of discovered metabolites and genome capability. This work mimicked naturally occurring competition by construction of an artificial coculture of basidiomycete fungi for the identification of secondary metabolites with novel scaffolds and excellent bioactivity. Unusual linear sesterterpenes of postrediene A to C synthesized by P. ostreatus not only were promising lead drugs against human-pathogenic fungi but also highlighted a distinct pathway for sesterterpene biosynthesis in basidiomycetes. The current work provides an important basis for uncovering novel gene functions involved in sesterterpene synthesis and for gaining insights into the mechanism of silent gene activation in fungal defense.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society for Microbiology ; 2022
    In:  Applied and Environmental Microbiology Vol. 88, No. 23 ( 2022-12-13)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 88, No. 23 ( 2022-12-13)
    Abstract: Alginate lyases play a vital role in the degradation of alginate, an important marine carbon source. Alginate is a complex macromolecular substrate, and the synergy of alginate lyases is important for the alginate utilization by microbes and the application of alginate lyases in biotechnology. Although many studies have focused on the synergy between different alginate lyases, the synergy between two alginate lyase domains of one alginate lyase has not been reported. Here, we report the synergism between the two catalytic domains of a novel alginate lyase, AlyC6’, from the marine alginate-degrading bacterium Vibrio sp. NC2. AlyC6’ contains two PL7 catalytic domains (CD1 and CD2) that have no sequence similarity. While both CD1 and CD2 are endo-lyases with the highest activity at 30°C, pH 8.0, and 1.0 M NaCl, they also displayed some different properties. CD1 was PM-specific, but CD2 was PG-specific. Compared with CD2, CD1 had higher catalytic efficiency, but lower substrate affinity. In addition, CD1 had a smaller minimal substrate than CD2, and the products from CD2 could be further degraded by CD1. These distinctions between the two domains enable them to synergize intramolecularly in alginate degradation, resulting in efficient and complete degradation of various alginate substrates. The bioinformatics analysis revealed that diverse alginate lyases have multiple catalytic domains, which are widespread, especially abundant in Flavobacteriaceae and Alteromonadales , which may secret multimodular alginate lyases for alginate degradation. This study provides new insight into bacterial alginate lyases and alginate degradation and is helpful for designing multimodular enzymes for efficient alginate depolymerization. IMPORTANCE Alginate is a major component in the cell walls of brown algae. Alginate degradation is carried out by alginate lyases. Until now, while most characterized alginate lyases contain one single catalytic domain, only a few have been shown to contain two catalytic domains. Furthermore, the synergy of alginate lyases has attracted increasing attention since it plays important roles in microbial alginate utilization and biotechnological applications. Although many studies have focused on the synergy between different alginate lyases, the synergy between two catalytic domains of one alginate lyase has not been reported. Here, a novel alginate lyase, AlyC6’, with two functional alginate lyase domains was biochemically characterized. Moreover, the synergism between the two domains of AlyC6’ was revealed. Additionally, the distribution of the alginate lyases with multiple alginate lyase domains was investigated based on the bioinformatics analysis. This study provides new insight into bacterial alginate lyases and alginate degradation.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society for Microbiology ; 2023
    In:  Applied and Environmental Microbiology Vol. 89, No. 7 ( 2023-07-26)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 89, No. 7 ( 2023-07-26)
    Abstract: Dimethylsulfoniopropionate (DMSP) and related organic sulfur compounds play key roles in global sulfur cycling. Bacteria have been found to be important DMSP producers in seawater and surface sediments of the aphotic Mariana Trench (MT). However, detailed bacterial DMSP cycling in the Mariana Trench subseafloor remains largely unknown. Here, the bacterial DMSP-cycling potential in a Mariana Trench sediment core (7.5 m in length) obtained at a 10,816-m water depth was investigated using culture-dependent and -independent methods. The DMSP content fluctuated along the sediment depth and reached the highest concentration at 15 to 18 cm below the seafloor (cmbsf). dsyB was the dominant known DMSP synthetic gene, existing in 0.36 to 1.19% of the bacteria, and was identified in the metagenome-assembled genomes (MAGs) of previously unknown bacterial DMSP synthetic groups such as Acidimicrobiia , Phycisphaerae , and Hydrogenedentia . dddP , dmdA , and dddX were the major DMSP catabolic genes. The DMSP catabolic activities of DddP and DddX retrieved from Anaerolineales MAGs were confirmed by heterologous expression, indicating that such anaerobic bacteria might participate in DMSP catabolism. Moreover, genes involved in methanethiol (MeSH) production from methylmercaptopropionate (MMPA) and dimethyl sulfide (DMS), MeSH oxidation, and DMS production were highly abundant, suggesting active conversions between different organic sulfur compounds. Finally, most culturable DMSP synthetic and catabolic isolates possessed no known DMSP synthetic and catabolic genes, and actinomycetes could be important groups involved in both DMSP synthesis and catabolism in Mariana Trench sediment. This study extends the current understanding of DMSP cycling in Mariana Trench sediment and highlights the need to uncover novel DMSP metabolic genes/pathways in extreme environments. IMPORTANCE Dimethylsulfoniopropionate (DMSP) is an abundant organosulfur molecule in the ocean and is the precursor for the climate-active volatile gas dimethyl sulfide. Previous studies focused mainly on bacterial DMSP cycling in seawater, coastal sediment, and surface trench sediment samples, but DMSP metabolism in the Mariana Trench (MT) subseafloor sediments remains unknown. Here, we describe the DMSP content and metabolic bacterial groups in the subseafloor of the MT sediment. We found that the tendency for vertical variation of the DMSP content in the MT was distinct from that of the continent shelf sediment. Although dsyB and dddP were the dominant DMSP synthetic and catabolic genes in the MT sediment, respectively, both metagenomic and culture methods revealed multiple previously unknown DMSP metabolic bacterial groups, especially anaerobic bacteria and actinomycetes. The active conversion of DMSP, DMS, and methanethiol may also occur in the MT sediments. These results provide novel insights for understanding DMSP cycling in the MT.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society for Microbiology ; 2022
    In:  Applied and Environmental Microbiology Vol. 88, No. 9 ( 2022-05-10)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 88, No. 9 ( 2022-05-10)
    Abstract: Pichia pastoris is widely used for the production of valuable recombinant proteins. An advantage of P. pastoris over other expression systems is that it secretes low levels of endogenous proteins, which facilitates the purification processes if the desired recombinant proteins are efficiently secreted into the culture medium. However, not all recombinant proteins can be successfully secreted by P. pastoris , especially enzymes that are located in intracellular compartments in their native hosts. Few studies have reported strategies for releasing recombinant proteins which cannot be secreted by standard protocols. Here, we investigated whether this challenge can be addressed using novel secretion leaders. Analysis of the secretome and transcriptome of P. pastoris indicated that the four genes with the highest protein-to-transcript ratios were EPX1 , PAS_chr3_0030 , SCW10 , and UTH1 , suggesting that their gene products contain efficient secretion leaders. Our data revealed that the signal peptide derived from the PAS_chr3_0030 gene product conferred secretion competence to certain industrial enzymes, e.g., a nitrilase of Alcaligenes faecalis ZJUTB10, a ribosylnicotinamide kinase of P. pastoris , and a glucose dehydrogenase of Exiguobacterium sibiricum . Therefore, the signal peptide derived from the PAS_chr3_0030 gene product represents a novel secretion sequence for the secretory expression of recombinant enzymes in P. pastoris . IMPORTANCE Although P. pastoris is widely used for the secretory production of pharmaceutical proteins, its successful applications in the secretory production of industrial enzymes are limited. The α-mating factor pre-pro leader is the most widely used secretion signal in P. pastoris , but numerous industrial enzymes cannot be secreted using it. The importance of this study is that we identified a signal peptide derived from the PAS_chr3_0030 gene product which conferred secretion competence to three-quarters of the enzymes tested. This signal peptide derived from the PAS_chr3_0030 gene product may facilitate the application of P. pastoris in industrial biocatalysis.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Society for Microbiology ; 2019
    In:  Applied and Environmental Microbiology Vol. 85, No. 18 ( 2019-09-15)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 85, No. 18 ( 2019-09-15)
    Abstract: Furfural is an important renewable precursor for multiple commercial chemicals and fuels; a main inhibitor existing in cellulosic hydrolysate, which is used for bioethanol fermentation; and a potential carcinogen, as well. Using a genetic system in Saccharomyces cerevisiae that allows detection of crossover events, we observed that the frequency of mitotic recombination was elevated by 1.5- to 40-fold when cells were treated with 0.1 g/liter to 20 g/liter furfural. Analysis of the gene conversion tracts associated with crossover events suggested that most furfural-induced recombination resulted from repair of DNA double-strand breaks (DSBs) that occurred in the G 1 phase. Furfural was incapable of breaking DNA directly in vitro but could trigger DSBs in vivo related to reactive oxygen species accumulation. By whole-genome single nucleotide polymorphism (SNP) microarray and sequencing, furfural-induced genomic alterations that range from single base substitutions, loss of heterozygosity, and chromosomal rearrangements to aneuploidy were explored. At the whole-genome level, furfural-induced events were evenly distributed across 16 chromosomes but were enriched in high-GC-content regions. Point mutations, particularly the C-to-T/G-to-A transitions, were significantly elevated in furfural-treated cells compared to wild-type cells. This study provided multiple novel insights into the global effects of furfural on genomic stability. IMPORTANCE Whether and how furfural affects genome integrity have not been clarified. Using a Saccharomyces cerevisiae model, we found that furfural exposure leads to in vivo DSBs and elevation in mitotic recombination by orders of magnitude. Gross chromosomal rearrangements and aneuploidy events also occurred at a higher frequency in furfural-treated cells. In a genome-wide analysis, we show that the patterns of mitotic recombination and point mutations differed dramatically in furfural-treated cells and wild-type cells.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 90, No. 2 ( 2024-02-21)
    Abstract: Kelps are important primary producers in coastal marine ecosystems. Polysaccharides, as major components of brown algal biomass, constitute a large fraction of organic carbon in the ocean. However, knowledge of the identities and pathways of epiphytic bacteria involved in the degradation process of brown algal polysaccharides during kelp decay is still elusive. Here, based on metagenomic analyses, the succession of epiphytic bacterial communities and their metabolic potential were investigated during the early and late decay stages of Saccharina japonica . Our study revealed a transition in algal polysaccharide-degrading bacteria during kelp decay, shifting from alginate-degrading Gammaproteobacteria to fucoidan-degrading Verrucomicrobia, Planctomycetes, Kiritimatiellota, and Bacteroidetes. A model for the dynamic degradation of algal cell wall polysaccharides, a complex organic carbon, by epiphytic microbiota during kelp decay was proposed. This study deepens our understanding of the role of epiphytic bacteria in marine algal carbon cycling as well as pathogen control in algal culture.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2024
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 83, No. 4 ( 2017-02-15)
    Abstract: Manipulation of biofilm formation in Shewanella is beneficial for application to industrial and environmental biotechnology. BpfA is an adhesin largely responsible for biofilm formation in many Shewanella species. However, the mechanism underlying BpfA production and the resulting biofilm remains vaguely understood. We previously described the finding that BpfA expression is enhanced by DosD, an oxygen-stimulated diguanylate cyclase, under aerobic growth. In the present work, we identify FlrA as a critical transcription regulator of the bpfA operon in Shewanella putrefaciens CN32 by transposon mutagenesis. FlrA acted as a repressor of the operon promoter by binding to two boxes overlapping the −10 and −35 sites recognized by σ 70 . DosD regulation of the expression of the bpfA operon was mediated by FlrA, and cyclic diguanylic acid (c-di-GMP) abolished FlrA binding to the operon promoter. We also demonstrate that FlhG, an accessory protein for flagellum synthesis, antagonized FlrA repression of the expression of the bpfA operon. Collectively, this work demonstrates that FlrA acts as a central mediator in the signaling pathway from c-di-GMP to BpfA-associated biofilm formation in S. putrefaciens CN32. IMPORTANCE Motility and biofilm are mutually exclusive lifestyles, shifts between which are under the strict regulation of bacteria attempting to adapt to the fluctuation of diverse environmental conditions. The FlrA protein in many bacteria is known to control motility as a master regulator of flagellum synthesis. This work elucidates its effect on biofilm formation by controlling the expression of the adhesin BpfA in S. putrefaciens CN32 in response to c-di-GMP. Therefore, FlrA plays a dual role in controlling motility and biofilm formation in S. putrefaciens CN32. The cooccurrence of flrA , bpfA , and the FlrA box in the promoter region of the bpfA operon in diverse Shewanella strains suggests that bpfA is a common mechanism that controls biofilm formation in this bacterial species.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 86, No. 20 ( 2020-10)
    Abstract: Thermomyces dupontii , a widely distributed thermophilic fungus, is an ideal organism for investigating the mechanism of thermophilic fungal adaptation to diverse environments. However, genetic analysis of this fungus is hindered by a lack of available and efficient gene-manipulating tools. In this study, two different Cas9 proteins from mesophilic and thermophilic bacteria, with in vivo expression of a single guide RNA (sgRNA) under the control of tRNA Gly , were successfully adapted for genome editing in T. dupontii . We demonstrated the feasibility of applying these two gene editing systems to edit one or two genes in T. dupontii . The mesophilic CRISPR/Cas9 system displayed higher editing efficiency (50 to 86%) than the thermophilic CRISPR/Cas9 system (40 to 67%). However, the thermophilic CRISPR/Cas9 system was much less time-consuming than the mesophilic CRISPR/Cas9 system. Combining the CRISPR/Cas9 systems with homologous recombination, a constitutive promoter was precisely knocked in to activate a silent polyketide synthase-nonribosomal peptide synthase (PKS-NRPS) biosynthetic gene, leading to the production of extra metabolites that did not exist in the parental strains. Metabolic analysis of the generated biosynthetic gene mutants suggested that a key biosynthetic pathway existed for the biosynthesis of thermolides in T. dupontii , with the last two steps being different from those in the heterologous host Aspergillus . Further analysis suggested that these biosynthetic genes might be involved in fungal mycelial growth, conidiation, and spore germination, as well as in fungal adaptation to osmotic, oxidative, and cell wall-perturbing agents. IMPORTANCE Thermomyces represents a unique ecological taxon in fungi, but a lack of flexible genetic tools has greatly hampered the study of gene function in this taxon. The biosynthesis of potent nematicidal thermolides in T. dupontii remains largely unknown. In this study, mesophilic and thermophilic CRISPR/Cas9 gene editing systems were successfully established for both disrupting and activating genes in T. dupontii . In this study, a usable thermophilic CRISPR/Cas9 gene editing system derived from bacteria was constructed in thermophilic fungi. Chemical analysis of the mutants generated by these two gene editing systems identified the key biosynthetic genes and pathway for the biosynthesis of nematocidal thermolides in T. dupontii . Phenotype analysis and chemical stress experiments revealed potential roles of secondary metabolites or their biosynthetic genes in fungal development and adaption to chemical stress conditions. These two genomic editing systems will not only accelerate investigations into the biosynthetic mechanisms of unique natural products and functions of cryptic genes in T. dupontii but also offer an example for setting up CRISPR/Cas9 systems in other thermophilic fungi.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...