GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (9)
  • OceanRep: Article in a Scientific Journal - peer-reviewed  (9)
  • 1
    Publication Date: 2021-02-08
    Description: We analyze the contribution of the Agulhas Current on the central water masses of the Benguela upwelling system (BUS) over the last decades in a high-resolution ocean simulation driven by atmospheric reanalysis. The BUS is an Eastern Boundary Upwelling System where upwelling of cold nutrient-rich water favors biomass growth. The two distinct subregions, North and South Benguela, differ in nutrient and oxygen properties of the upwelling water mass. Our analysis indicates that the contribution of Agulhas water to the upwelling is very strong in both subregions. Although the water masses feeding the upwelling have a common origin, their pathways are distinct in both regions. Whereas for the central waters of South Benguela the path is rather direct from where it is formed, the central waters of North Benguela takes a longer route through the equatorial current system. Not only the travel time from the Agulhas Current to the BUS is longer but also the central water mass is twice as old for the northern part when compared to the southern. Our analysis traces the pathways, history, and origin of the central water masses feeding upwelling in the BUS and emphasizes the direct impact of the Agulhas Current on the upwelling region. The variability of that link between the Indian Ocean and the South Atlantic is likely to change the nutrient and oxygen content, as well as temperature and salinity of the water masses in the upwelling region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    International Union of Geological Sciences
    In:  Episodes: Journal of International Geoscience, 10 (2). pp. 87-93.
    Publication Date: 2016-10-07
    Description: The geological evolution of the western margin of South America has long been a challenge to geologists interested in convergent plate tectonics. Late in 1986, scientists on the ODP drillship JOIDES Resolution confirmed that the upper slope of the Peruvian margin consists of continental crust whereas the lower slope comprises an accretionary complex. An intricate history of horizontal and vertical movements can be detected, and the locations of ancient centers of upwelling appear to have varied, partly due to tectonic movements of the margin. In this review of Leg 112, the three scientific leaders on this cruise discuss their results.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-06
    Description: The present study examines sedimentation rates in the eastern Gotland Basin using a variety of methods that reveal considerable heterogeneity in the rates, both spatially and temporally. High-resolution seismic recordings and correlation with long sediment cores indicate increased thickness of strata and higher sedimentation rates (0.75 mm a-1) in the eastern part of the basin than in the western part (0.23 mm a-1) since the Littorina transgression some 8000 14C years BP. This difference is apparently a consequence of a counterclockwis e near-bottom circulation in the basin with periodically high current speeds that cause winnowing on the steep SE slope of the basin and differential settling of sediments in areas of low current speeds. On shorter time scales, recent sediment accumulation rates based on radiometric dating (210Pb) are in general twice as high as those observed 25 years ago using the same method. The higher modern rates, compared to those of the 1970s, may partly be due to increased eutrophication, as more carbon is buried in the sediment, and partly due to increased erosion in shallow water areas. However, strong lateral variations are evident. The average sediment accumulation rates vary between 119 and 340 gm-2 a-1 (corresponding to sedimentation rates of 2.1–2.5 mm a-1) in the deepest part of the basin. Very high rates (6100 g m-2 a-1, corresponding to sedimentation rates of 30 mm a-1) are observed on an intraslope basin site (offshore Latvia) at a water depth of only 70 m. The radiometrically determined sediment accumulation rates are up to three times higher than those estimated from average water column concentrations of suspended matter and from sediment trap flux rates. The discrepancy suggests that sedimentation in the deep basin may have a substantial contribution from near-bottom lateral transport.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-03
    Description: Rising stable nitrogen isotope ratios (δ15N) in dated sediment records of the German Bight/SE North Sea track river-induced coastal eutrophication over the last 2 centuries. Fully exploiting their potential for reconstructions of pristine conditions and quantitative analysis of historical changes in the nitrogen cycle from these sediment records requires knowledge on processes that alter the isotopic signal in non-living organic matter (OM) of sinking particles and sediments. In this study, we analyze the isotopic composition of particulate nitrogen (PN) in the water column during different seasons, in surface sediments, and in sediment cores to assess diagenetic influences on the isotopic composition of OM. Amino acid (AA) compositions of suspended matter, surface sediments, and dated cores at selected sites of the German Bight serve as indicators for quality and degradation state of PN. The δ15N of PN in suspended matter had seasonal variances caused by two main nitrate sources (oceanic and river) and different stages of nitrate availability during phytoplankton assimilation. Elevated δ15N values (〉 20‰) in suspended matter near river mouths and the coast coincide with a coastal water mass receiving nitrate with elevated isotope signal (δ15N 〉 10‰) derived from anthropogenic input. Particulate nitrogen at offshore sites fed by oceanic nitrate having a δ15N between 5 and 6‰ had low δ15N values (〈 2‰), indicative of an incipient phytoplankton bloom. Surface sediments along an offshore–onshore transect also reflect the gradient of low δ15N of nitrate in offshore sites to high values near river mouths, but the range of values is smaller than between the end members listed above and integrates the annual δ15N of detritus. Sediment cores from the coastal sector of the gradient show an increasing δ15N trend (increase of 2.5‰) over the last 150 years. This is not related to any change in AA composition and thus reflects eutrophication. The δ15N signals from before AD 1860 represent a good estimation of pre-industrial isotopic compositions with minimal diagenetic overprinting. Rising δ13C in step with rising δ15N in these cores is best explained by increasing productivity caused by eutrophication.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: The effect of the supply of chlorinated biphenyls by the river Oder into some adjacent areas of Baltic Sea was studied in nine sediment cores and in 10 suspended matter samples. Congener-specific analysis was carried out on 28 individual chlorobiphenyls (CBs). ∑CB concentrations in suspension ranged from 2.4 pg dm-3 in the southern Bornholm Basin to 986 pg dm-3 in the Achterwasser. ∑CB contents in surface sediment decreased with increasing distance from the river mouth. Highest contents were found in the Oderhaff (18 ng g-1 dw) decreasing to 2 ng g-1 dw in the Bornholm Basin. The ∑CB contents generally decreased more or less regularly with increasing depth. The compositions of the CB mixtures in surficial sediment and suspension samples were rather similar, suggesting a common source. Compositions of the CB mixtures in the sediment cores showed distinct differences. These may reflect variations in source strength over time. Mass balance considerations on the basis of the 28 CBs resulted in an estimation of a total storage of approximate 733±158 kg ∑CBs in the Oderhaff, Achterwasser, Greifswalder Bodden, Oder Rinne, Arkona Basin and Bornholm Basin in the past 65 years, covering the time period since CBs were first produced. Based on river data about 500 kg of ∑CBs were supplied during this time by river Oder, that may thus be the major source of these compounds for the southern Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-03-14
    Description: Arabian Sea sediments record changes in the upwelling system off Arabia, which is driven by the monsoon circulation system over the NW Indian Ocean. In accordance with climate models, and differing from other large upwelling areas of the tropical ocean, a 500,000-yr record of productivity at ODP Site 723 shows consistently stronger upwelling during interglaciations than during glaciations. Sea-surface temperatures (SSTs) reconstructed from the alkenone unsaturation index (U K′ 37) are high (up to 27°C) during interglaciations and low (22-24°C) during glaciations, indicating a glacial-interglacial temperature change of 〉3°C in spite of the dampening effect of enhanced or weakened upwelling. The increased productivity is attributed to stronger monsoon winds during interglacial times relative to glacial times, whereas the difference in SSTs must be unrelated to upwelling and to the summer monsoon intensity. The winter (NE) monsoon was more effective in cooling the Arabian Sea during glaciations then it is now.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: The coastal ocean is strongly affected by ocean acidification because of its shallow water depths, low volume, and the closeness to terrestrial dynamics. Earlier observations of dissolved inorganic carbon (DIC) and total alkalinity (TA) in the southern part of the North Sea, a northwest European shelf sea, revealed lower acidification effects than expected. It has been assumed that anaerobic degradation and subsequent TA release in the adjacent back-barrier tidal areas (Wadden Sea) in summertime is responsible for this phenomenon. In this study the exchange rates of TA and DIC between the Wadden Sea tidal basins and the North Sea and the consequences for the carbonate system in the German Bight are estimated using a 3D ecosystem model. The aim of this study is to differentiate the various sources contributing to observed high summer TA in the southern North Sea. Measured TA and DIC in the Wadden Sea are considered as model boundary conditions. This procedure acknowledges the dynamic behaviour of the Wadden Sea as an area of effective production and decomposition of organic material. According to the modelling results, 39 Gmol TA yr−1 were exported from the Wadden Sea into the North Sea, which is less than a previous estimate but within a comparable range. The interannual variabilities in TA and DIC, mainly driven by hydrodynamic conditions, were examined for the years 2001–2009. Dynamics in the carbonate system are found to be related to specific weather conditions. The results suggest that the Wadden Sea is an important driver for the carbonate system in the southern North Sea. On average 41 % of TA inventory changes in the German Bight were caused by riverine input, 37 % by net transport from adjacent North Sea sectors, 16 % by Wadden Sea export, and 6 % were caused by internal net production of TA. The dominant role of river input for the TA inventory disappears when focusing on TA concentration changes due to the corresponding freshwater fluxes diluting the marine TA concentrations. The ratio of exported TA versus DIC reflects the dominant underlying biogeochemical processes in the Wadden Sea. Whereas aerobic degradation of organic matter played a key role in the North Frisian Wadden Sea during all seasons of the year, anaerobic degradation of organic matter dominated in the East Frisian Wadden Sea. Despite the scarcity of high-resolution field data, it is shown that anaerobic degradation in the Wadden Sea is one of the main contributors of elevated summer TA values in the southern North Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-31
    Description: The westerlies and trade winds over the South Atlantic and Indian Ocean are important drivers of the regional oceanography around southern Africa, including features such as the Agulhas Current, the Agulhas leakage, and the Benguela upwelling. Agulhas leakage constitutes a fraction of warm and saline water transport from the Indian Ocean into the South Atlantic. The leakage is stronger during intensified westerlies. Here, we analyze the wind stress of different observational and modeled atmospheric data sets (covering the last 2 millennia, the recent decades, and the 21st century) with regard to the intensity and position of the southeasterly trades and the westerlies. The analysis reveals that variations of both wind systems go hand in hand and that a poleward shift of the westerlies and trades and an intensification of westerlies took place during the recent decades. Furthermore, upwelling in South Benguela is slightly intensified when trades are shifted poleward. Projections for strength and position of the westerlies in the 21st century depend on assumed CO2 emissions and on their effect relative to the ozone forcing. In the strongest emission scenario (RCP8.5) the simulations show a further southward displacement, whereas in the weakest emission scenario (RCP2.6) a northward shift is modeled, possibly due to the effect of ozone recovery dominating the effect of anthropogenic greenhouse forcing. We conclude that the Agulhas leakage has intensified during the last decades and is projected to increase if greenhouse gas emissions are not reduced. This will have a small impact on Benguela upwelling strength and may also have consequences for water mass characteristics in the upwelling region. An increased contribution of Agulhas water to the upwelling water masses will import more preformed nutrients and oxygen into the upwelling region.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-15
    Description: Amino acids (AAs) mainly bound in proteins are major constituents of living biomass and non-living organic material in the oceanic particulate and dissolved organic matter pool. Uptake and cycling by heterotrophic organisms lead to characteristic changes in AA composition so that AA-based biogeochemical indicators are often used to elucidate processes of organic matter cycling and degradation. We analyzed particulate AA in a large sample set collected in various oceanic regions covering sinking and suspended particles in the water column, sediment samples, and dissolved AA from water column and pore water samples. The aim of this study was to test and improve the use of AA-derived biogeochemical indicators as proxies for organic matter sources and degradation and to better understand particle dynamics and interaction between the dissolved and particulate organic matter pools. A principal component analysis (PCA) of all data delineates diverging AA compositions of sinking and suspended particles with increasing water depth. A new sinking particle and sediment degradation indicator (SDI) allows a fine-tuned classification of sinking particles and sediments with respect to the intensity of degradation, which is associated with changes of stable isotopic ratios of nitrogen (δ15N). This new indicator is furthermore sensitive to sedimentary redox conditions and can be used to detect past anoxic early diagenesis. A second indicator emerges from the AA spectra of suspended particulate matter (SPM) in the epipelagic and that of the meso- and bathypelagic ocean and is a residence time indicator (RTI). The characteristic changes in AA patterns from shallow to deep SPM are recapitulated in the AA spectra of the dissolved organic matter (DOM) pool, so that deep SPM is more similar to DOM than to any of the other organic matter pools. This implies that there is equilibration between finely dispersed SPM and DOM in the deep sea, which may be driven by microbial activity combined with annealing and fragmentation of gels. As these processes strongly depend on physico-chemical conditions in the deep ocean, changes in quality and degradability of DOM may strongly affect the relatively large pool of suspended and dissolved AA in the ocean that amounts to 15 Pg amino acid carbon (AAC) and 89 ± 29 Pg AAC, respectively.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...