GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-09-08
    Description: The weathering of silicate minerals exposed on the continents is the largest sink of atmospheric CO2 on time scales of millions of years. The rate of this process is positively correlated with global mean temperature and atmospheric CO2 concentration, resulting in a negative feedback that stabilizes Earths’ climate (Berner, 2004). Detrital silicates derived from the physical denudation of the continents are a major component of marine sediments (Li and Schoonmaker, 2003). However, their geochemical behaviour is poorly understood and they are considered to be unimportant to the long-term carbon cycle. We show that in organic matter-rich sediments of the Sea of Okhotsk detrital silicates undergo intense weathering. This process is likely favoured by microbial activity, which lowers pore water pH and releases dissolved humic substances, and by the freshness of detrital silicates which originate from the cold, poorly weathered Amur River basin. Numerical simulations of early diagenesis show that submarine weathering rates in our study area are comparable to average continental weathering rates (Gaillardet et al., 1999). Furthermore, silicate weathering seems to be widespread in organic matter-rich sediments of continental margins, suggesting the existence of a significant CO2 sink there. These findings imply a greater efficiency of the silicate weathering engine also at low surface temperatures, resulting in a weakening of the negative feedback between pCO2, climate evolution and silicate weathering.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Westermann
    In:  Geographische Rundschau (5). pp. 22-29.
    Publication Date: 2017-06-16
    Description: Natural gas hydrate ist found worldwide in oceanic sediment around continents. The top of the gas hydrate stability zone is between 300-750 m of depths due to hydrate formation at elevated pressures (〉60 bar) and low temperatures (〈4°C), the availability and movement of methane-super-saturated pore fluids, tectonic contraints, and ocean hydrography. The base decreases with increasing depth in the ocean and depends on the geothermal gradient. It may range from 100s to 1000s of meters belowseaflorr. Methane usually originates from decomposition of organic matter. based on a continuously updated global inventory the current estimate for gas hydrates stands at 10x10x10 and 10x10x10x10 gigations of methane carbon. Varying percentages of this very large reserve are of major interest as a potential energy source. Gas hydrates are also of concern as an accelerating force in global warming and as a potential environmental hazard through submarine slumps. Currently they are vigorously promoted as a long-term and safe CO2-storage option in the form of hydrate.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Wirtschafts- u. Verlagsges. Gas und Wasser
    In:  Energie-, Wasser-Praxis, 62 (12). pp. 104-109.
    Publication Date: 2016-12-21
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    U.S. Department of Energy/National Energy Technology Laboratory
    In:  Fire in the Ice: Methane Hydrate Newsletter, 15 (2). pp. 6-9.
    Publication Date: 2017-01-05
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Wiley-VCH
    In:  In: Chemie über den Wolken ... und darunter. , ed. by Zellner, R. Wiley-VCH, Weinheim, pp. 65-70. ISBN 978-3-527-32651-8
    Publication Date: 2012-02-23
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Wissenschaftliche Auswertungen
    In:  In: Warnsignal Klima: Die Meere - Änderungen & Risiken. , ed. by Lozan, J. L., Gral, H., Karbe, L. and Reise, K. Wissenschaftliche Auswertungen, Hamburg, pp. 285-288.
    Publication Date: 2019-02-13
    Description: Commercial utilization of methane hydrate deposits in the seabed: The vast amount of natural gas bound in methane hydrates is considered as future energy resource by a growing number of states and companies in South-East Asia and North America. Successful field production tests showed that gas hydrates can be dissociated in the sub-surface by heat addition and pressure reduction while the released gas is produced via conventional drill wells. Laboratory studies demonstrate that CO2 from coal power plants can be applied to liberate methane from the hydrate structure and produce natural gas while the injected CO2 is safely stored as hydrate in the sub-surface. The commercial exploitation of sub-seabed gas hydrates may start in the next decade pending on the success of field production tests off Japan scheduled for 2012 and 2014. Specific environmental risks are associated with the future utilization of gas hydrates. These include the extinction of special benthic ecosystems relying on methane from hydrates as energy source, the triggering of slope failure, and leakage of greenhouse gases into the marine environment. Suitable measures have to be taken to avoid these risks. An appropriate legal framework should be established at the international level to meet the specific challenges and risks associated with the commercial use of gas hydrates in the marine environment.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    HWU
    In:  In: Proceedings of the 7th International Conference on Gas Hydrates (ICGH2011). HWU, Edinburgh, 279/1-6.
    Publication Date: 2012-07-06
    Description: Within the German gas hydrate initiative SUGAR, we have developed a new tool for predicting the formation of sub-seafloor gas hydrate deposits. For this purpose, a new 2D/3D module simulating the biogenic generation of methane from organic material and the formation of gas hydrates has been added to the petroleum systems modeling software package PetroMod®. T ypically, PetroMod® simulates the thermogenic generation of multiple hydrocarbon components including oil and gas, their migration through geological strata, and finally predicts the oil and gas accumulation in suitable reservoir formations. We have extended PetroMod® to simulate gas hydrate accumulations in marine and permafrost environments by the implementation of algorithms describing (1) the physical, thermodynamic, and kinetic properties of gas hydrates; and (2) a kinetic continuum model for the microbially mediated, low temperature degradation of particulate organic carbon in sediments. Additionally, the temporal and spatial resolutions of PetroMod® were increased in order to simulate processes on time scales of hundreds of years and within decimeters of spatial extension. As a first test case for validating and improving the abilities of the new hydrate module, the petroleum systems model of the Alaska North Slope developed by IES (currently Shlumberger) and the USGS has been chosen. In this area, gas hydrates have been drilled in several wells, and a field test for hydrate production is planned for 2011/2012. The results of the simulation runs in PetroMod® predicting the thickness of the gas hydrate stability field, the generation and migration of biogenic and thermogenic methane gas, and its accumulation as gas hydrates will be shown during the conference. The predicted distribution of gas hydrates will be discussed in comparison to recent gas hydrate findings in the Alaska North Slope region.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    CAU
    In:  In: Tiefsee : eine Ausstellung des Zoologischen Museums der Christian-Albrechts-Universität zu Kiel. , ed. by Brandis, D. and Hoffmann-Wieck, G. CAU, Kiel, pp. 66-73. ISBN 978-3-928794-59-0
    Publication Date: 2014-02-24
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
    In:  In: RV Celtic Explorer EUROFLEETS cruise report CE12010 - ECO2@NorthSea : 20.07. – 06.08.2012, Bremerhaven - Hamburg. , ed. by Linke, P. GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, pp. 28-32.
    Publication Date: 2014-02-20
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    HWU
    In:  In: Proceedings of the 7th International Conference on Gas Hydrates (ICGH2011). HWU, Edinburgh, UK, 129/1-13.
    Publication Date: 2019-09-23
    Description: The accumulation of methane hydrate in marine sediments is basically controlled by the accumulation of particulate organic carbon at the seafloor, the kinetics of microbial organic matter degradation and methane generation in marine sediments, the thickness of the gas hydrate stability zone (GHSZ), the solubility of methane in pore fluids within the GHSZ and the ascent of deepseated pore fluids and methane gas into the GHSZ. Our present knowledge on these controlling factors is discussed and new estimates of global sediment and methane fluxes are presented. A new transport-reaction model is applied at a global grid defined by these up- dated parameter values. The model yields an improved and better constrained estimate of the global inventory of methane gas hydrates in marine sediments (3000 ± 2000 Gt of methane carbon).
    Type: Book chapter , NonPeerReviewed , info:eu-repo/semantics/bookPart
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...