GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Multiphase flow. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (642 pages)
    Edition: 1st ed.
    ISBN: 9783030723613
    Series Statement: Fluid Mechanics and Its Applications Series ; v.128
    DDC: 532.05
    Language: English
    Note: Intro -- Contents -- Introduction -- Reactive Bubbly Flows-An  Interdisciplinary Approach -- Control of the Formation and Reaction of Copper-Oxygen Adduct Complexes in Multiphase Streams -- 1 Introduction -- 1.1 Basics of Cu/O2 Chemistry -- 1.2 Classical Systems -- 2 Novel Bisguanidine Copper Systems for O2 Activation and Transfer -- 2.1 Bisguanidine Toluene Systems for O2 Activation -- 2.2 Synthesis of Bisguanidine Toluene Systems for O2 Activation -- 2.3 Bisguanidine Toluene Systems for O2 Transfer -- 2.4 Fluorescence Studies with Bisguanidine Toluene Systems for O2 Transfer -- 3 Novel Hybrid Guanidine Copper Systems for O2 Activation and Transfer -- 3.1 Hybrid Guanidine Copper Systems for O2 Activation with Non-coordinating Anions -- 3.2 Hybrid Guanidine Copper Systems for O2 Activation with Coordinating Anions -- 3.3 Variations of the Amine Moiety in Hybrid Guanidine Ligands -- 4 Conclusion and Outlook -- References -- In Situ Characterizable High-Spin Nitrosyl-Iron Complexes with Controllable Reactivity in Multiphase Reaction Media -- 1 Introduction -- 2 [Fe(H2O)5(NO)]2+, the 'Brown-Ring' Chromophore -- 3 Syntheses, Structure and Bonding of {FeNO}7- and {Fe(NO)2}9-type Halogenido Nitrosyl Ferrates -- 4 Structure and Bonding of Nitrosyl-iron(II) Compounds with Aminecarboxylato Co-Ligands in Aqueous Solution -- 4.1 First Part: Less Stable Compounds -- 4.2 Second Part: Stable Compounds -- 4.3 Stability of the Fe-NO Linkage in Aqueous Solution -- 5 The 'Non-Innocent' Nitrosyl Ligand and the Challenge of IUPAC's Oxidation-State Assignment -- References -- Formation, Reactivity Tuning and Kinetic Investigations of Iron "Dioxygen" Intermediate Complexes and Derivatives in Multiphase Flow Reactions -- 1 Introduction -- 2 O2 Activation -- 3 The Iron HPTB System -- 3.1 General Aspects -- 3.2 Previous Investigations on the Iron HPTB System. , 3.3 Investigations on the Iron HPTB System -- 4 Conclusion and Outlook -- References -- Analysis of Turbulent Mixing Und Mass Transport Processes in Bubble Swarms Under the Influence of Bubble-Induced Turbulence -- 1 Introduction -- 2 Counterflow Water Channel -- 3 Characterization of the Counter-Flow Channel -- 4 Emulation of Bubble Induced Turbulence -- 4.1 Free Moving Particle Grids -- 4.2 Characterization of the Particle Grids and Turbulence Analysis -- 4.3 Conclusion -- 5 Behavior of a Single Bubble in Swarm like Background Turbulence -- 5.1 Experimental Setup -- 6 Movement in Emulated Turbulence -- 6.1 Deformation of the Surface -- 6.2 Influence of the Turbulence on the Bubbles Wake Structures -- 6.3 Conclusion -- 7 Conclusions and Outlook -- References -- Experimental Studies on the Hydrodynamics, Mass Transfer and Reaction in Bubble Swarms with Ultrafast X-ray Tomography and Local Probes -- 1 Introduction -- 2 Reaction Systems Used for Experimental Investigation of Bubbly Flows -- 2.1 Chemical Absorption of CO2 -- 2.2 Reaction of FeII(ligand)/NO -- 3 Experimental Setup and Methods -- 3.1 Bubble Column Setup for CO2 Absorption Measurements -- 3.2 Ultrafast X-ray CT for Investigation of Bubble Column Hydrodynamics -- 3.3 Wire-Mesh Sensor for Mass Transfer Measurements -- 3.4 Experimental Setup for Experiments with the FeII(edta)/NO System -- 4 Experimental Results -- 4.1  Gas Dynamics and Bubble Properties of Uniform Bubbly Flow -- 5 Conclusion and Outlook -- References -- Experimental Investigation of Local Hydrodynamics and Chemical Reactions in Taylor Flows Using Magnetic Resonance Imaging -- 1 Introduction -- 2 Experimental Flow Setup for the Investigation of Taylor Flows Inside a Horizontal Bore MRI Scanner -- 2.1 Initial Version of the Flow Setup -- 2.2 Improved Version of the Flow Setup -- 2.3 Hydrodynamic Investigation by PIV. , 3 Development of an MRI Setup for Taylor Flow Investigations Inside a Horizontal Bore MRI Scanner -- 4 Development of an MRI Method for Taylor Flow Investigations -- 4.1 Influence of Different MRI Parameters on the Acquired Data -- 4.2 Influence of Gas-Liquid Mass Transfer on the Acquired Data -- 4.3 MRI Sequence for Taylor Flow Investigation -- 4.4 MRI Data Acquisition and Processing -- 5 MRI of Hydrodynamics Inside Taylor Flows -- 6 MRI of Chemical Reactions Inside Taylor Flows -- 7 Conclusion and Outlook -- References -- Investigation of the Influence of Transport Processes on Chemical Reactions in Bubbly Flows Using Space-Resolved In Situ Analytics and Simultaneous Characterization of Bubble Dynamics in Real-Time -- 1 Introduction and Aims -- 2 Experimental Setups -- 2.1 Taylor Flow Setup -- 2.2 Real-Time Raman Process Analysis System -- 2.3 Continuous-Flow Setup with UV/VIS Spectroscopy -- 2.4 Real-Time Tomographic Process Analysis System -- 3 Experimental Results -- 3.1 Evaluation of Chemical Reaction Systems Based on Spectroscopy -- 3.2 Evaluation of the Confocal Laser Raman Spectroscopy Setup -- 3.3 Measurements of Reaction Kinetics with a SuperFocus Mixer -- 3.4 Concentration Measurements with the Real-Time Raman Process Analysis System Applied to a Taylor Flow of Gaseous CO2 in Aqueous Sodium Hydroxide Solutions -- 3.5 Measurement of a Wake Below a Gas Bubble Using Laser Beams -- 3.6 Characterization of the Real-Time Tomographic Process Analysis System -- 4 Summary and Conclusion -- References -- Determination of Intrinsic Gas-Liquid Reaction Kinetics in Homogeneous Liquid Phase and the Impact of the Bubble Wake on Effective Reaction Rates -- 1 Introduction/Motivation -- 2 Determination of Gas-Liquid Reaction Kinetics in Homogeneous Liquid Phase -- 2.1 Experimental Setup -- 2.2 Experimental Results. , 2.3 Kinetic Model of the Toluene Oxidation -- 2.4 Validation of the Kinetic Model -- 3 Numerical Study of the Toluene Oxidation in a Reactive Bubbly Flow -- 3.1 Numerical Model -- 3.2 Results -- 4 Study of the Toluene Oxidation in a Technical Bubble Column -- 4.1 Experimental Setup -- 4.2 Experimental Conditions -- 4.3 Results -- 5 Numerical Study of the Mixing Dependencies in a Reactive Bubbly Flow -- 5.1 Preliminary Considerations -- 5.2 Is the Overall Reaction Influenced by Mixing? -- 5.3 When Does Micro Mixing Affect the Overall Reaction Rate? -- 5.4 What Causes Mixture Masking? -- 6 Conclusions -- References -- Mass Transfer Around Gas Bubbles in Reacting Liquids -- 1 Introduction -- 1.1 Fluid Dynamics of Single Bubbles -- 1.2 Mass Transfer of Single Bubbles -- 2 Experimental Setup and Methods -- 2.1 Measurement of Velocities -- 2.2 Evaluation of Mass Transfer Coefficients -- 2.3 Material Properties and Fluid Dynamics of FeII(Ligand) Systems -- 3 Physical Mass Transfer -- 4 Chemical Reaction -- 4.1 Enhancement Factors Due to Chemical Reaction of CO2 in NaOHaq -- 4.2 System NO in FeII(Ligand) -- 5 Conclusion -- References -- Experimental Investigation of Reactive Bubbly Flows-Influence of Boundary Layer Dynamics on Mass Transfer and Chemical Reactions -- 1 Introduction -- 1.1 Mass Transfer in Reactive Bubbly Flows -- 2 Determination of Mass Transfer Relevant Kinetics in a SuperFocus Mixer -- 2.1 Sodium Sulfite Oxidation as a Model Reaction -- 2.2 Concentration Measurements Using Laser Induced Fluorescence (LIF) -- 2.3 Experimental Setup and Methods -- 2.4 Experimental Results -- 3 Investigation of Chemical Reactions by Means of Taylor Bubbles -- 3.1 Experimental Setup and Methods -- 3.2 Experimental Results -- 3.3 Analyzing Wake Structures at Taylor Bubbles Using Lagrangian Coherent Structures. , 3.4 Mass Balance for Wake Structures in Taylor Flows -- 4 Local Mass Transfer Measurements at Ascending Bubbles -- 4.1 Experimental Setup and Methods -- 4.2 Experimental Results -- 5 Conclusion and Outlook -- References -- Experimental Characterization of Gas-Liquid Mass Transfer in a Reaction Bubble Column Using a Neutralization Reaction -- 1 Experimental Setup of the Bubble Column -- 2 Applied Measurement Techniques -- 2.1 Bubble Characterization with Shadowgraphy and Particle-Tracking-Velocimetry -- 2.2 Mass Transfer Measurements through 2-Tracer-Laser-Induced-Fluorescence -- 2.3 Measurement of the Liquid Flow Field by Means of Particle Image Velocimetry -- 3 Reaction System -- 4 Results -- 4.1 Bubble Parameters -- 4.2 Mass Transfer from CO2-Bubbles -- 4.3 Mass Transfer Coefficients -- 4.4 Liquid Velocity -- 5 Conclusions -- References -- Modeling and Simulation of Convection-Dominated Species Transport in the Vicinity of Rising Bubbles -- 1 Introduction -- 2 Numerical Methods -- 2.1 Geometrical Volume-of-Fluid Approach -- 2.2 Single-Phase Approximation -- 3 Modeling of Convection-Dominated Concentration Boundary Layers -- 3.1 Overview -- 3.2 Effect of Insufficient Mesh Resolution -- 3.3 Analytical and Data-Driven Profile Reconstruction -- 3.4 Implementation in Simulation Approaches -- 3.5 Validation -- 4 Reactive Species Transport Around Single Rising Bubbles -- 4.1 Overview -- 4.2 Velocity and Concentration Fields -- 4.3 Species Transfer and Enhancement -- 4.4 Local Selectivity -- 5 Conclusion and Outlook -- References -- Development and Application of Direct Numerical Simulations for Reactive Transport Processes at Single Bubbles -- 1 Introduction -- 2 Model and Method -- 2.1 Mathematical Model -- 2.2 Numerical Methods -- 3 Numerical Validation -- 3.1 Computational Case Setup -- 3.2 Validation Study. , 4 Reactive Species Transfer from Single Rising Bubbles.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...