GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Organic compounds. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (614 pages)
    Edition: 1st ed.
    ISBN: 9783527609901
    Language: English
    Note: Intro -- Functional Organic Materials -- Contents -- Preface -- List of Contributors -- Part I 3-D Carbon-rich π-Systems - Nanotubes and Segments -- 1 Functionalization of Carbon Nanotubes -- 1.1 Introduction to Carbon Nanotubes - A New Carbon Allotrope -- 1.2 Functionalization of Carbon Nanotubes -- 1.3 Covalent Functionalization -- 1.3.1 Halogenation of Carbon Nanotubes -- 1.3.1.1 Fluorination of Carbon Nanotubes -- 1.3.1.2 Chlorination of Carbon Nanotubes -- 1.3.1.3 Bromination of MWCNTs -- 1.3.1.4 Chemical Derivatization of "Fluoronanotubes" -- 1.3.2 Oxidation of CNTs - Oxidative Purification -- 1.3.2.1 Carboxylation of CNTs -- 1.3.2.2 Defect Functionalization - Transformation of Carboxylic Functions -- 1.3.3 Hydrogenation of Carbon Nanotubes -- 1.3.4 Addition of Radicals -- 1.3.5 Addition of Nucleophilic Carbenes -- 1.3.6 Sidewall Functionalization Through Electrophilic Addition -- 1.3.7 Functionalization Through Cycloadditions -- 1.3.7.1 Addition of Carbenes -- 1.3.7.2 Addition of Nitrenes -- 1.3.7.3 Nucleophilic Cyclopropanation - Bingel Reaction -- 1.3.7.4 Azomethine Ylides -- 1.3.7.5 [4+2]-Cycloaddition - Diels-Alder Reaction -- 1.3.7.6 Sidewall Osmylation of Individual SWCNTs -- 1.3.8 Aryl Diazonium Chemistry - Electrochemical Modification of Nanotubes -- 1.3.9 Reductive Alkylation and Arylation of Carbon Nanotubes -- 1.3.10 Addition of Carbanions - Reactions with Alkyllithium -- 1.3.11 Covalent Functionalization by Polymerization - "Grafting To" and "Grafting From" -- 1.4 Noncovalent Exohedral Functionalization - Functionalization with Biomolecules -- 1.5 Endohedral Functionalization -- 1.6 Conclusions -- 1.7 Experimental -- References -- 2 Cyclophenacene Cut Out of Fullerene -- 2.1 Introduction -- 2.2 Synthesis of [10]Cyclophenacene π-Conjugated Systems from [60]Fullerene -- 2.2.1 Synthetic Strategy. , 2.2.2 Synthesis and Characterization of [10]Cyclophenacenes -- 2.2.3 Structural Studies and Aromaticity of [10]Cyclophenacene -- 2.2.4 Synthesis of Dibenzo-fused Corannulenes -- 2.2.5 Absorption and Emission of [10]Cyclophenacenes and Dibenzo Fused Corannulenes -- 2.3 Conclusion -- 2.4 Experimental -- References -- Part II Strategic Advances in Chromophore and Materials Synthesis -- 3 Cruciform π-Conjugated Oligomers -- 3.1 Introduction -- 3.2 Oligomers with a Tetrahedral Core Unit -- 3.3 Oligomers with a Tetrasubstituted Benzene Core -- 3.4 Oligomers with a Tetrasubstituted Biaryl Core -- 3.5 Conclusion -- 3.6 Experimental -- Acknowledgments -- References -- 4 Design of π-Conjugated Systems Using Organophosphorus Building Blocks -- 4.1 Introduction -- 4.2 Phosphole-containing π-Conjugated Systems -- 4.2.1 α,α´-Oligo(phosphole)s -- 4.2.2 Derivatives Based on 1,1'-Biphosphole Units -- 4.2.3 Mixed Oligomers Based on Phospholes with Other (Hetero)aromatics -- 4.2.4 Mixed Oligomers Based on Biphospholes with other (Hetero)aromatics -- 4.2.5 Mixed Oligomers Based on Phospholes with Ethenyl or Ethynyl Units -- 4.2.6 Polymers Incorporating Phospholes -- 4.2.7 Mixed Oligomers and Polymers Based on Dibenzophosphole or Dithienophosphole -- 4.3 Phosphine-containing π-Conjugated Systems -- 4.3.1 Polymers Based on p-Phenylenephosphine Units -- 4.3.2 Oligomers Based on Phosphine-Ethynyl Units -- 4.3.3 Mixed Derivatives Based on Arylphosphino Units -- 4.4 Phosphaalkene- and Diphosphene-containing π-Conjugated Systems -- 4.5 Conclusion -- 4.6 Selected Experimental Procedures -- References -- 5 Diversity-oriented Synthesis of Chromophores by Combinatorial Strategies and Multi-component Reactions -- 5.1 Introduction -- 5.2 Combinatorial Syntheses of Chromophores -- 5.2.1 Combinatorial Azo Coupling -- 5.2.2 Combinatorial Condensation Reactions. , 5.2.3 Combinatorial Cross-coupling Reactions -- 5.2.4 Combinatorial Coordination Chemistry -- 5.3 Novel Multi-component Syntheses of Chromophores -- 5.3.1 Multi-component Condensation Reactions -- 5.3.2 Multi-component Cross-coupling Reactions -- 5.4 Conclusion and Outlook -- 5.5 Experimental Procedures -- References -- 6 High-yield Synthesis of Shape-persistent Phenylene-Ethynylene Macrocycles -- 6.1 Introduction -- 6.2 Synthesis -- 6.2.1 General -- 6.2.2 The Kinetic Approach -- 6.2.2.1 Statistical Reactions -- 6.2.2.2 Template-controlled Cyclizations -- 6.2.3 The Thermodynamic Approach -- 6.3 Conclusion -- 6.4 Experimental Procedures [37] -- References -- 7 Functional Materials via Multiple Noncovalent Interactions -- 7.1 Introduction -- 7.2 Biologically Inspired Materials via Multi-step Self-assembly -- 7.3 Small Molecule-based Multi-step Self-assembly -- 7.4 Polymer-based Self-assembly -- 7.4.1 Main-chain Self-assembly -- 7.4.2 Side-chain Self-assembly -- 7.4.3 Macroscopic Self-assembly -- 7.5 Conclusion and Outlook -- References -- Part III Molecular Muscles, Switches and Electronics -- 8 Molecular Motors and Muscles -- 8.1 Introduction -- 8.2 Mechanically Interlocked Molecules as Artificial Molecular Machines -- 8.3 Chemically Induced Switching of the Bistable Rotaxanes -- 8.3.1 A Bistable [2]Rotaxane Driven by Acid-Base Chemistry -- 8.3.2 A pH-driven Molecular Elevator -- 8.3.3 A Molecular Muscle Powered by Metal Ion Exchange -- 8.3.4 Redox and Chemically Controlled Molecular Switches and Muscles -- 8.3.4.1 Solution-phase Switching -- 8.3.4.2 Condensed-phase Switching -- 8.3.4.3 A Solid-state Nanomechanical Device -- 8.4 Electrochemically Controllable Bistable Rotaxanes -- 8.4.1 A Benzidine/Biphenol-based Molecular Switch -- 8.4.2 Electrochemically Controlled Switching of TTF/DNP-based [2]Rotaxanes -- 8.4.2.1 Solution-phase Switching. , 8.4.2.2 Metastability of a Redox-driven [2]Rotaxane SAM on Gold Surfaces -- 8.4.2.3 A TTF/DNP [2]Rotaxane-based Electrochromic Device -- 8.4.2.4 A Redox-driven [2]Rotaxane-based Molecular Switch Tunnel Junctions (MSTJs) Device -- 8.4.3 A Redox and Chemically Controllable Bistable Neutral [2]Rotaxane -- 8.4.3.1 Electrochemical Switching -- 8.4.3.2 Chemical Switching Induced by Lithium Ion (Li(+)) -- 8.5 Photochemically Powered Molecular Switches -- 8.5.1 Molecular Switching Caused by Photoisomerization -- 8.5.2 PET-induced Switching of an H-bonded Molecular Motor -- 8.5.3 MLCT-induced Switching of a Metal Ion-based Molecular Motor -- 8.5.4 A Photo-driven Molecular Abacus -- 8.6 Conclusions -- Acknowledgments -- References -- 9 Diarylethene as a Photoswitching Unit of Intramolecular Magnetic Interaction -- 9.1 Introduction -- 9.2 Photochromic Spin Coupler -- 9.3 Synthesis of Diarylethene Biradicals -- 9.4 Photoswitching Using Bis(3-thienyl)ethene -- 9.5 Reversed Photoswitching Using Bis(2-thienyl)ethene -- 9.6 Photoswitching Using an Array of Photochromic Molecules -- 9.7 Development of a New Switching Unit -- 9.8 Conclusions -- 9.9 Experimental Procedures -- Acknowledgments -- References -- 10 Thiol End-capped Molecules for Molecular Electronics: Synthetic Methods, Molecular Junctions and Structure-Property Relationships -- 10.1 Introduction -- 10.2 Synthetic Procedures -- 10.2.1 Protecting Groups for Arylthiols -- 10.2.1.1 Synthesis of Arylthiol "Alligator Clips" -- 10.2.2 One-terminal Wires -- 10.2.3 Two-terminal Wires -- 10.2.4 Three-terminal Wires -- 10.2.5 Four-terminal Wires -- 10.2.6 Caltrops -- 10.3 Electron Transport in Two- and Three-terminal Molecular Devices -- 10.3.1 Molecular Junctions -- 10.3.1.1 Scanning Tunneling-based Molecular Junctions -- 10.3.1.2 Conducting-probe Atomic Force Microscopy. , 10.3.1.3 Solution-phase Molecular STM Junctions -- 10.3.1.4 Break Junctions -- 10.3.1.5 Crossed Wires -- 10.3.1.6 Nanopore Junctions -- 10.3.1.7 Square-tip Junctions -- 10.3.1.8 Mercury Drop Junctions -- 10.3.1.9 Particle Junctions -- 10.3.1.10 Nanowire Junctions -- 10.3.1.11 Three-terminal Single-molecule Transistors -- 10.4 Summary and Outlook -- 10.5 Experimental -- References -- 11 Nonlinear Optical Properties of Organic Materials -- 11.1 Introduction to Nonlinear Optics -- 11.1.1 Introduction -- 11.1.2 Linear and Nonlinear Polarization -- 11.1.3 Second-order Nonlinear Optical Effects -- 11.1.4 Measurement Techniques for Second-order Properties, β and χ((2)) -- 11.1.5 Third-order Nonlinear Optical Effects -- 11.1.6 Measurement Techniques for 2PA Cross-section, δ -- 11.2 Second-order Chromophores for Electrooptic Applications -- 11.2.1 Design of Second-order Chromophores: the Two-level Model -- 11.2.2 Other Chromophore Designs -- 11.2.3 Other Considerations -- 11.2.4 High-performance Electooptic Poled-polymer Systems -- 11.3 Design and Application of Two-photon Absorbing Chromophores -- 11.3.1 Essential-state Models for Two-photon Cross-section -- 11.3.2 Chromophore Designs -- 11.3.3 Applications of Two-photon Absorption -- 11.4 Appendix: Units in NLO -- Acknowledgments -- References -- Part IV Electronic Interaction and Structure -- 12 Photoinduced Electron Transfer Processes in Synthetically Modified DNA -- 12.1 DNA as a Bioorganic Material for Electron Transport -- 12.2 Mechanism of Hole Transfer and Hole Hopping in DNA -- 12.3 Reductive Electron Transfer and Excess Electron Transport in DNA -- 12.3.1 Strategies for the Synthesis of DNA Donor-Acceptor Systems -- 12.3.2 Chromophore Functionalization of DNA Bases via Synthesis of DNA Building Blocks -- 12.3.3 DNA Base Modifications via a Solid-phase Synthetic Strategy. , 12.3.4 Chromophores as Artificial DNA Base Substitutes.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...