GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-30
    Description: Publication date: Available online 28 June 2018 Source: Radiation Measurements Author(s): X.J. Ou, H.M. Roberts, G.A.T. Duller, M.D. Gunn, W.T. Perkins There is growing interest in rock surface burial and exposure luminescence dating for use in Quaternary science and in archaeology. Such methods have enormous potential both in increasing the range of sedimentary contexts that can be dated, and improving the accuracy and the precision of dating within those contexts. Bleaching of the luminescence signal with depth into the rock surface is likely to vary with lithology. However, previous work on rock surface dating has not systematically studied the differences in light attenuation for rocks of different lithologies, or directly quantified the attenuation of light in different rock surfaces. This study investigates the attenuation of light in different rock types (greywacke, sandstone, two granites and quartzite) using two different approaches: 1) sunlight bleaching experiments, to assess the residual infrared stimulated luminescence signal measured at 50 °C (IRSL 50 ) and the post-IR IRSL signal measured at 225 °C (post-IR IRSL 225 ) at different depths within the rocks after different durations of exposure to daylight; and, 2) direct measurement of light attenuation in rock slices using a spectrometer. Data from the spectrometer shows that for all rocks, attenuation is greater for shorter wavelengths (∼400 nm) than longer ones. A consistent difference in attenuation coefficient is seen when comparing the IRSL 50 and the post-IR IRSL 225 signals; this is thought to reflect the different sensitivity of these two signals to infrared and visible light. Direct measurement using a spectrometer is much more rapid than undertaking a bleaching experiment, and also provides wavelength-resolved attenuation data. Comparison of the numerical values from the two approaches is complex, but they yield consistent results. For the samples analysed here, the rocks that appear lightest in colour show the least attenuation of light and the luminescence signals are bleached to the greatest depths, and are thus the most suitable for dating using luminescence.
    Print ISSN: 1350-4487
    Electronic ISSN: 1879-0925
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...