GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-12-22
    Description: The problem of variational data assimilation for a nonlinear evolution model is formulated as an optimal control problem to find the initial condition function (analysis). The data contain errors (observation and background errors); hence there is an error in the analysis. For mildly nonlinear dynamics the analysis error covariance can be approximated by the inverse Hessian of the cost functional in the auxiliary data assimilation problem, and for stronger nonlinearity by the ‘effective’ inverse Hessian. However, it has been noticed that the analysis error covariance is not the posterior covariance from the Bayesian perspective. While these two are equivalent in the linear case, the difference may become significant in practical terms with the nonlinearity level rising. For the proper Bayesian posterior covariance a new approximation via the Hessian is derived and its ‘effective’ counterpart is introduced. An approach for computing the mentioned estimates in the matrix-free environment using the Lanczos method with preconditioning is suggested. Numerical examples which validate the developed theory are presented for the model governed by Burgers equation with a nonlinear viscous term. Copyright © 2012 Royal Meteorological Society
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...