GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 163-174, doi:10.1175/JPO-D-17-0161.1.
    Description: The general problem of exchange from a shallow shelf across sharp topography to the deep ocean forced by narrow, cross-shelf wind jets is studied using quasigeostrophic theory and an idealized primitive equation numerical model. Interest is motivated by katabatic winds that emanate from narrow fjords in southeast Greenland, although similar topographically constrained wind jets are found throughout the world’s oceans. Because there is no net vorticity input by the wind, the circulation is largely confined to the region near the forcing. Circulation over the shelf is limited by bottom friction for weakly stratified flows, but stratification allows for much stronger upper-layer flows that are regulated by weak coupling to the lower layer. Over the sloping topography, the topographic beta effect limits the deep flow, while, for sufficient stratification, the upper-layer flow can cross the topography to connect the shelf to the open ocean. This can be an effective transport mechanism even for short, strong wind events because damping of the upper-layer flow is weak. A variety of transients are generated for an abrupt onset of winds, including short topography Rossby waves, long topographic Rossby waves, and inertial waves. Using parameters representative of southeast Greenland, katabatic wind events will force an offshore transport of O(0.4) Sv (1 Sv ≡ 106 m3 s−1) that, when considered for 2 days, will result in an offshore flux of O(5 × 1010) m3.
    Description: MAS was supported by the National Science Foundation under Grant OCE-1533170.
    Description: 2018-07-18
    Keywords: Coastal flows ; Downslope winds ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...