GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Zeitschriften
  • OceanRep  (6)
  • OceanRep: Artikel in einer Fachzeitschrift - begutachtet  (6)
  • Royal Society of London  (6)
Publikationsart
  • Zeitschriften
  • OceanRep  (6)
Datenquelle
  • OceanRep: Artikel in einer Fachzeitschrift - begutachtet  (6)
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2020-06-05
    Beschreibung: Increasing empirical evidence indicates the number of released individuals (i.e. propagule pressure) and number of released species (i.e. colonization pressure) are key determinants of the number of species that successfully invade new habitats. In view of these relationships, and the possibility that ships transport whole communities of organisms, we collected 333 ballast water and sediment samples to investigate the relationship between propagule and colonization pressure for a variety of diverse taxonomic groups (diatoms, dinoflagellates and invertebrates). We also reviewed the scientific literature to compare the number of species transported by ships to those reported in nature. Here, we show that even though ships transport nearly entire local communities, a strong relationship between propagule and colonization pressure exists only for dinoflagellates. Our study provides evidence that colonization pressure of invertebrates and diatoms may fluctuate widely irrespective of propagule pressure. We suggest that the lack of correspondence is explained by reduced uptake of invertebrates into the transport vector and the sensitivity of invertebrates and diatoms to selective pressures during transportation. Selection during transportation is initially evident through decreases in propagule pressure, followed by decreased colonization pressure in the most sensitive taxa.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Royal Society of London
    In:  Philosophical Transactions of the Royal Society B: Biological Sciences, 376 (1834). Art.Nr. 20200174.
    Publikationsdatum: 2022-01-07
    Beschreibung: Soils play an important role in mediating chemical weathering reactions and carbon transfer from the land to the ocean. Proposals to increase the contribution of alkalinity to the oceans through ‘enhanced weathering’ as a means to help prevent climate change are gaining increasing attention. This would augment the existing connection between the biogeochemical function of soils and alkalinity levels in the ocean. The feasibility of enhanced weathering depends on the combined influence of what minerals are added to soils, the formation of secondary minerals in soils and the drainage regime, and the partial pressure of respired CO2 around the dissolving mineral. Increasing the alkalinity levels in the ocean through enhanced weathering could help to ameliorate the effects of ocean acidification in two ways. First, enhanced weathering would slightly elevate the pH of drainage waters, and the receiving coastal waters. The elevated pH would result in an increase in carbonate mineral saturation states, and a partial reversal in the effects of elevated CO2. Second, the increase in alkalinity would help to replenish the ocean's buffering capacity by maintaining the ‘Revelle Factor’, making the oceans more resilient to further CO2 emissions. However, there is limited research on the downstream and oceanic impacts of enhanced weathering on which to base deployment decisions.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-02-07
    Beschreibung: Epidemiological traits of host–parasite associations depend on the effects of the host, the parasite and their interaction. Parasites evolve mechanisms to infect and exploit their hosts, whereas hosts evolve mechanisms to prevent infection and limit detrimental effects. The reasons why and how these traits differ across populations still remain unclear. Using experimental cross-infection of three-spined stickleback Gasterosteus aculeatus and their species-specific cestode parasites Schistocephalus solidus from Alaskan and European populations, we disentangled host, parasite and interaction effects on epidemiological traits at different geographical scales. We hypothesized that host and parasite main effects would dominate both within and across continents, although interaction effects would show geographical variation of natural selection within and across continents. We found that mechanisms preventing infection (qualitative resistance) occurred only in a combination of hosts and parasites from different continents, while mechanisms limiting parasite burden (quantitative resistance) and reducing detrimental effects of infection (tolerance) were host-population specific. We conclude that evolution favours distinct defence mechanisms on different geographical scales and that it is important to distinguish concepts of qualitative resistance, quantitative resistance and tolerance in studies of macroparasite infections.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    Royal Society of London
    In:  Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 477 (2247). Art.Nr. 20200824.
    Publikationsdatum: 2022-01-07
    Beschreibung: Iodine is a critical trace element involved in many diverse and important processes in the Earth system. The importance of iodine for human health has been known for over a century, with low iodine in the diet being linked to goitre, cretinism and neonatal death. Research over the last few decades has shown that iodine has significant impacts on tropospheric photochemistry, ultimately impacting climate by reducing the radiative forcing of ozone (O3) and air quality by reducing extreme O3 concentrations in polluted regions. Iodine is naturally present in the ocean, predominantly as aqueous iodide and iodate. The rapid reaction of sea-surface iodide with O3 is believed to be the largest single source of gaseous iodine to the atmosphere. Due to increased anthropogenic O3, this release of iodine is believed to have increased dramatically over the twentieth century, by as much as a factor of 3. Uncertainties in the marine iodine distribution and global cycle are, however, major constraints in the effective prediction of how the emissions of iodine and its biogeochemical cycle may change in the future or have changed in the past. Here, we present a synthesis of recent results by our team and others which bring a fresh perspective to understanding the global iodine biogeochemical cycle. In particular, we suggest that future climate-induced oceanographic changes could result in a significant change in aqueous iodide concentrations in the surface ocean, with implications for atmospheric air quality and climate.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2024-02-14
    Beschreibung: Abstract Mesopelagic fishes are an important element of marine food webs, a huge, still mostly untapped food resource, and great contributors to the biological carbon pump, whose future under climate change scenarios are unknown. The shrinking of commercial fishes within decades has been an alarming observation, but its causes remain contended. Here, we investigate the effect of warming climate on mesopelagic fish size in the eastern Mediterranean Sea during a glacial–interglacial–glacial transition of the Middle Pleistocene (marine isotope stages 20–18; 814–712 Kyr B.P.), which included a 4 °C increase of global seawater temperature. Our results based on fossil otoliths show that the median size of lanternfishes, one of the most abundant groups of mesopelagic fishes in fossil and modern assemblages, declined by ~35% with climate warming at the community level. However, individual mesopelagic species showed different and often opposing trends in size across the studied time interval, suggesting that climate warming in the interglacial resulted in an ecological shift toward increased relative abundance of smaller-sized mesopelagic fishes due to geographic and/or bathymetric distribution range shifts, and the size-dependent effects of warming.
    Materialart: Article , PeerReviewed
    Format: archive
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    Royal Society of London
    In:  Proceedings of the Royal Society B - Biological Sciences, 276 (1656). pp. 427-435.
    Publikationsdatum: 2020-06-08
    Beschreibung: Diatoms contribute to a substantial portion of primary production in the oceans and many lakes. Owing to their relatively heavy cell walls and high nutrient requirements, planktonic diatoms are expected to decrease with climate warming because of reduced nutrient redistribution and increasing sinking velocities. Using a historical dataset, this study shows that diatoms were able to maintain their biovolume with increasing stratification in Lake Tahoe over the last decades; however, the diatom community structure changed. Increased stratification and reduced nitrogen to phosphorus ratios selected for small-celled diatoms, particularly within the Cyclotella genus. An empirical model showed that a shift in phytoplankton species composition and cell size was consistent within different depth strata, indicating that altered nutrient concentrations were not responsible for the change. The increase in small-celled species was sufficient to decrease the average diatom size and thus sinking velocity, which strongly influences energy transfer through the food web and carbon cycling. Our results show that within the diverse group of diatoms, small-sized species with a high surface area to volume ratio were able to adapt to a decrease in mixing intensity, supporting the hypotheses that abiotic drivers affect the size structure of planktonic communities and that warmer climate favours small-sized diatom cells.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...