GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • OceanRep  (9)
  • OceanRep: Article in a Scientific Journal - peer-reviewed  (9)
  • Regional Euro-Asian Biological Invasions Centre - REABIC  (9)
Document type
  • Journals
  • OceanRep  (9)
Source
  • OceanRep: Article in a Scientific Journal - peer-reviewed  (9)
Years
  • 1
    Publication Date: 2015-12-16
    Description: The round goby, Neogobius melanostomus (Pallas, 1814), is one of the most invasive non-indigenous species in the Baltic Sea. It dominates coastal fisheries in some localities and is frequently found in offshore pelagic catches. This paper identifies management issues and suggests actions to be considered for post-invasion management. Priority should be given to the establishment of a coordinated pan-Baltic monitoring programme and associated data storage and exchange, as well as the compilation of landing statistics of the round goby in commercial and recreational fisheries. While eradication is unrealistic, population control that leads to minimising the risk of transfer to yet uncolonised areas in the Baltic Sea and adjacent waterbodies is feasible. This should comprise the requirement that the species be landed in commercial fishery bycatch, the management of ships’ ballast water and sediments, and hull fouling of inland and sea-going vessels, including recreational boats. Extensive involvement of stakeholders is crucial at all phases of the management process.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: Introduced Marine Pests (IMP, = non-indigenous marine species) prevention, early detection and risk-based management strategies have become the priority for biosecurity operations worldwide, in recognition of the fact that, once established, the effective management of marine pests can rapidly become cost prohibitive or impractical. In Western Australia (WA), biosecurity management is guided by the " Western Australian Prevention List for Introduced Marine Pests " which is a policy tool that details species or genera as being of high risk to the region. This list forms the basis of management efforts to prevent introduction of these species, monitoring efforts to detect them at an early stage, and rapid response should they be detected. It is therefore essential that the species listed can be rapid and confidently identified and discriminated from native species by a range of government and industry stakeholders. Recognising that identification of these species requires very specialist expertise which may be in short supply and not readily accessible in a regulatory environment, and the fact that much publicly available data is not verifiable or suitable for regulatory enforcement, the WA government commissioned the current project to collate a reference collection of these marine pest specimens. In this work, we thus established collaboration with researchers worldwide in order to source representative specimens of the species listed. Our main objective was to build a reference collection of taxonomically vouchered specimens and subsequently to generate species-specific DNA barcodes suited to supporting their future identification. To date, we were able to obtain specimens of 75 species (representative of all but four of the pests listed) which have been identified by experts and placed with the WA Government Department of Fisheries and, where possible, in accessible museums and institutions in Australasia. The reference collection supports the fast and reliable taxonomic and molecular identification of marine pests in WA and constitutes a valuable resource for training of stakeholders with interest in IMP recognition in Australia. The reference collection is also useful in supporting the development of a variety of DNA-based detection strategies such as real-time PCR and metabarcoding of complex environmental samples (e.g. biofouling communities). The Prevention List is under regular review to ensure its continued relevance and that it remains evidence and risk-based. Similarly, its associated reference collection also remains to some extent a work in progress. In recognition of this fact, this report seeks to provide details of this continually evolving information repository publicly available to the biosecurity management community worldwide
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-30
    Description: An as-yet-undescribed, non-indigenous polychaete species was found at very high densities in the eastern part of the Baltic Sea in Estonia in 2012. The species belongs to the sabellid genus Laonome Malmgren, 1866, but it could not be assigned to any of the previously described species. To date, the species has established a stable population after surviving a notably cold winter (2012/2013). To study the local distribution and abundance of the species, a spatial grid with some stations repeated seasonally and interannually was sampled in a quantitative manner. Based of the survey data and available environmental data, the variables that contributed significantly to explaining variation in the abundance of the polychaete were determined using the Boosted Regression Trees modelling approach. Molecular barcodes to characterize the identity of the species were also established. The abundance of Laonome sp. exhibited strong seasonal variation, peaking between July and November. Besides seasonality, the quantity of decomposed microalgae in the sediment and wave exposure best explained the variation in abundance. Laonome sp. is now well-established in the Baltic Sea and locally reached high densities in low salinity areas. This non-indigenous polychaete may potentially modify sediment morphology and chemistry and disrupt the natural infaunal communities. Laonome sp. could displace or even completely eliminate some species currently present in the study area and beyond if it spreads; however, it could also facilitate currently-present species through the provision of alternative substrate and/or food. Given its persistence and high abundance in Pärnu Bay, colonization of other low-salinity areas of the Baltic Sea can be expected.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Regional Euro-Asian Biological Invasions Centre - REABIC
    In:  Management of Biological Invasions, 5 (3). pp. 245-253.
    Publication Date: 2014-10-29
    Description: Biological invasions by non-indigenous species are considered a leading threat to biodiversity, with prevention being a key management strategy. Consequently, numerous commercial ballast water treatment systems have been, or are being, developed to prevent future aquatic invasions. However, most treatment systems are being designed for the many vessels undertaking long transoceanic voyages in marine waters rather than the relatively few vessels operating on short voyages in freshwater, such as those in the Laurentian Great Lakes. Here we conduct testing of the biological efficacy of a 40 µm ballast water filtration unit through shipboard trials. We test the hypotheses that i) filtration will significantly reduce abundance of zooplankton greater than 50 µm in size but not phytoplankton 10 to 50 µm in size; ii) filtration will reduce zooplankton abundances in ballast water below International Maritime Organization discharge standards, but not those of phytoplankton; and iii) filtration will alter the community composition of zooplankton, non-randomly reducing invasion risk of larger taxa. During the summer of 2012, three shipboard trials were conducted. Ballast water samples were collected using a before-after experimental design. Our study showed that filtration significantly reduced abundance of copepods and cladocerans, but not of juvenile dreissenid veligers and rotifers. Contrary to our expectation, phytoplankton densities were also significantly lower after the treatment. Overall, ballast water treated during our tests would not meet proposed international discharge standards. Filtration altered relative abundance of zooplankton, but did not reduce introduction risk of any taxonomic group due to the small juvenile stages and dormant eggs which passed through the treatment. While we do not rule out filtration as a ballast water treatment option for zooplankton in the future, our tests indicate further development is required for meaningful reduction of invasion risk.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-08-08
    Description: The Laurentian Great Lakes have been successfully invaded by at least 182 nonindigenous species. Here we report on two new species, water hyacinth Eichhornia crassipes and water lettuce Pistia stratiotes, that were found at a number of locations in Lake St. Clair and Detroit River during autumn 2010. Both species are commonly sold in the water garden and aquarium trade in southern Ontario and elsewhere. While it is not clear whether these species are established or can establish in the Great Lakes, the historic assumption that neither of these subtropical to tropical plants pose an invasion risk must be questioned in the light of changing environmental conditions associated with climate warming that may render Great Lakes’ habitats more suitable for these species and increase the likelihood of their successful establishment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-10-17
    Description: The North-American amphipod Gammarus tigrinus Sexton, 1939 is a successful invader in European waters due to its high reproductive potential and tolerance to severe environmental conditions and various pollutants. In this study, we followed the invasion and establishment of this exotic species in a species-poor ecosystem of the northern Baltic Sea. Two years after the establishment of G. tigrinus, over half of the sampling sites were occupied exclusively by G. tigrinus, whereas G. tigrinus coexisted with native gammarids in only one tenth of all sites. There was a clear separation of habitat occupancy between native species and G. tigrinus in terms of abiotic environment and macrophytic habitat. G. tigrinus preferred shallow sheltered areas dominated by vascular plants, while native species mainly occurred in more exposed, deeper habitats with phaeophytes and rhodophytes. In its suboptimal habitats, G. tigrinus exhibited moderate abundances, which allowed for the coexistence of native gammarids and the invasive gammarid. Since its establishment, the abundance of G. tigrinus has showed no signs of decline, with abundances exceeding almost fifteen times those of native gammarids at some locations. The results suggest that, irrespective to the competitive superiority of G. tigrinus over the native gammarids, the invasive G. tigrinus does not monopolize the entire coastal area of the northern Baltic Sea but mostly outcompetes native species in its favoured habitats..
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Regional Euro-Asian Biological Invasions Centre - REABIC
    In:  Management of Biological Invasions, 5 (3). pp. 197-208.
    Publication Date: 2014-10-29
    Description: The unintentional introduction of nonindigenous species by ballast water discharge is one of the greatest threats to biodiversity in freshwater systems. Proposed international regulations for ballast water management will require enumeration of viable plankton in ballast water. In this study we analyze the efficacy of vital stains in determining viability of freshwater taxa. The efficacy of vital stains fluorescein diacetate (FDA) and FDA+5-chloromethylfluorescein diacetate (CMFDA) was evaluated with freshwater macroinvertebrates, zooplankton, and phytoplankton. Macroinvertebrates were cultured in laboratory, while plankton were collected from Hamilton Harbour and ballast tanks of commercial vessels. Organisms were subjected to various treatments (i.e., heat, NaClO, and NaOH) to establish efficacy of stains for viable and non-viable organisms. No significant difference in accuracy rate was found between stains, regardless of treatment, within groups of organisms, indicating that the addition of CMFDA is superfluous in the sample region studied. False positive errors, in which dead organisms fluoresced similarly to live organisms, occurred in most groups and were significantly different between test groups. False positive error rates were 2.3% for phytoplankton, 20% for ballast water zooplankton, 35% for Hamilton Harbour zooplankton and 47% for macroinvertebrates. Response to stains varied between taxonomic groups. Low (〈 10%) false positive error rates were observed with phytoplankton, soft-bodied rotifers, oligochaetes, and Bosmina spp., while rates between 20% and 50% were observed for Daphnia spp., Hexagenia sp., and Chironomus riparius. False positive rates of copepods, Hyalella azteca, and Hemimysis anomala were between 70% and 100%. The FDA/FDA+CMFDA vital staining methods provide useful tools for viability analysis of freshwater phytoplankton, soft-bodied invertebrates and zooplankton, and may be used for viability analysis of the ≥ 10 µm to 〈 50 µm size fraction in compliance testing of ballast water. However, viability analysis of larger freshwater crustaceans with vital stains should be undertaken with caution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-02-25
    Description: Identifying resource use and functional traits of non-indigenous species are promising means to increase the ability to predict ecological consequences of invasions. One of the most widely spread brachyuran crab species, and a recent invader in the northern Baltic Sea, is the North American Harris mud crab, Rhithropanopeus harrisii (Gould, 1841). Although spread, establishment, and population structure have been studied for this species, little is known about its role and impact in a new environment. We investigated the position and role of R. harrisii in the coastal food web by combining spatial and temporal estimates of trophic position using stable isotopes (δ13C and δ15N), with short-term food- and habitat-choice experiments. We observed a stable pattern in the trophic position between two environmentally different locations in the Archipelago Sea over the production season. The identification of a natural breakpoint in carbon stable isotopes at the size of 12 mm carapace width suggested a presence of an ontogenetic diet shift, which was confirmed by isotope signatures positioning large R. harrisii among secondary consumers and small individuals with primary consumers. The generalist consumer nature of R. harrisii and preference for structured habitat was supported by an active habitat and food choice, revealing no preference for prey species (polychaetes versus amphipod), but selection of brown algae over bare mud. To broaden the understanding of the functional role of R. harrisii, we combined our findings with other known biological and ecological traits of the species and qualitatively compared these to characteristics of other benthic organisms in the northern Baltic Sea, suggesting a general similarity in traits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Regional Euro-Asian Biological Invasions Centre - REABIC
    In:  Aquatic Invasions, 9 (4). pp. 499-506.
    Publication Date: 2019-08-06
    Description: Invasive species are often in focus in the non-indigenous species (NIS) research while low-abundance species receive relatively little attention. However, tracking NIS dynamics since the early stages of an invasion provides valuable information on the ecology of invasions. In the current paper, we investigated the invasion history and population dynamics of the small-bodied cladoceran Evadne anonyx G. O. Sars, 1897 in the Gulf of Riga (Baltic Sea) almost since its first detection in 2000. The species already was widespread the Gulf of Riga in 2001 and has been found in nearly every subsequent sample collected during summer months. However, the abundance of the species remained low, seldom 100 individuals m-3. Both, salinity and water temperature affected the spatial distribution and population abundance of E. anonyx. The species was found to occur only sporadically at salinities below ca. 6. To obtain reliable presence/absence and density estimates on this small-bodied cladoceran, the entire zooplankton sample needed to be analysed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...