GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers  (187)
  • Springer  (128)
  • 1
    Publication Date: 2012-10-01
    Description:    Pesticides are widely used in modern agriculture to minimize financial losses and maintain food supplies. In southeast Asia, where agriculture is the principal economic activity, pesticides are considered essential, particularly in tropical regions seeking to enter the global economy by providing off-season fresh fruits and vegetables. The absence of a strong legal framework for pesticides facilitated a significant increase in the use of low-quality pesticides. Farmers ignore the risks, safety instructions, and protective directives when using pesticides. They are only concerned about the effectiveness of the pesticides for killing pests, without paying attention to the effects on their health and the environment. The improper usage of pesticides and the incorrect disposal of pesticide wastes contributed to the pollution of groundwater, surface water, and soil, and induced health problems in local communities. This paper describes the impact of the exposure of pesticides on human health and water resources in connection with the usage of pesticides and their management. Because of availability, the data are mainly taken for Northern Vietnam, and applied to the water quality in the delta; nevertheless, the problem relates to all countries in the delta, and similar situations may be found in other regions, particularly in Asia. Content Type Journal Article Category ORIGINAL ARTICLE Pages 1-9 DOI 10.1007/s10163-012-0081-x Authors Pham Thi Thuy, Laboratory of Applied Physical Chemistry and Environmental Technology, Department of Chemical Engineering, K.U. Leuven, W. de Croylaan 46, 3001 Leuven, Belgium Steven Van Geluwe, Laboratory of Applied Physical Chemistry and Environmental Technology, Department of Chemical Engineering, K.U. Leuven, W. de Croylaan 46, 3001 Leuven, Belgium Viet-Anh Nguyen, Institute of Environmental Science and Engineering, Hanoi University of Civil Engineering, 55 Giai Phong Road, Hanoi, Vietnam Bart Van der Bruggen, Laboratory of Applied Physical Chemistry and Environmental Technology, Department of Chemical Engineering, K.U. Leuven, W. de Croylaan 46, 3001 Leuven, Belgium Journal Journal of Material Cycles and Waste Management Online ISSN 1611-8227 Print ISSN 1438-4957
    Print ISSN: 1438-4957
    Electronic ISSN: 1611-8227
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: To enable successful management of marine bioinvasions, timely and robust scientific advice is required. This knowledge should inform managers and stakeholders on the magnitude of a pressure (rate of human-mediated introductions), the environmental state of an ecosystem (impacts of non-indigenous species), and the success of management response (prevention, eradication, mitigation). This advice often relies on baseline biodiversity information in the form of measureable parameters (metrics). This can be derived from conventional approaches such as visual surveys, but also by utilizing environmental DNA/RNA-based molecular techniques, which are increasingly being touted as promising tools for assessing biodiversity and detecting rare or invasive species. Depending on the stage of incursion, each approach has merits and limitations. In this review we assess the performance of biosecurity-relevant biodiversity parameters derived from eDNA/eRNA samples and discuss the results in relation to different stages of invasion and management applications. The overall performance of considered methods ranged between 42 and 90% based on defined criteria, with target-specific approaches scoring higher for respective biosecurity applications, followed by eDNA metabarcoding. Caveats are discussed along with avenues which may enhance these techniques and their successful uptake for marine biosecurity surveillance and management. To facilitate and encourage uptake of these techniques, there is a need for an international collaborative framework aimed at unifying molecular sampling and analysis methodologies. Improvement of quantitative capacity and cost-efficiency will also enhance their integration in biosecurity programmes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-05-01
    Description: Introduction   The paper analyses the environment pollution state in different case studies of economic activities (i.e. co-generation electric and thermal power production, iron profile manufacturing, cement processing, waste landfilling, and wood furniture manufacturing), evaluating mainly the environmental cumulative impacts (e.g. cumulative impact against the health of the environment and different life forms). Materials and methods   The status of the environment (air, water resources, soil, and noise) is analysed with respect to discharges such as gaseous discharges in the air, final effluents discharged in natural receiving basins or sewerage system, and discharges onto the soil together with the principal pollutants expressed by different environmental indicators corresponding to each specific productive activity. The alternative methodology of global pollution index ( I GP * ) for quantification of environmental impacts is applied. Results and discussion   Environmental data analysis permits the identification of potential impact, prediction of significant impact, and evaluation of cumulative impact on a commensurate scale by evaluation scores (ES i ) for discharge quality, and global effect to the environment pollution state by calculation of the global pollution index ( I GP * ). Conclusions   The I GP * values for each productive unit (i.e. 1.664–2.414) correspond to an ‘environment modified by industrial/economic activity within admissible limits, having potential of generating discomfort effects’. The evaluation results are significant in view of future development of each productive unit and sustain the economic production in terms of environment protection with respect to a preventive environment protection scheme and continuous measures of pollution control. Content Type Journal Article Category Short Research and Discussion Article Pages 1-8 DOI 10.1007/s11356-012-0883-3 Authors Carmen Zaharia, Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection, ‘Gheorghe Asachi’ Technical University of Iasi, 73 Prof. Dr. docent D. Mangeron Blvd, 700050 Iasi, Romania Journal Environmental Science and Pollution Research Online ISSN 1614-7499 Print ISSN 0944-1344
    Print ISSN: 0944-1344
    Electronic ISSN: 1614-7499
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-11-12
    Description: The need for an integrated approach to the global challenge of POPs management Content Type Journal Article Category Editorial Pages 1-6 DOI 10.1007/s11356-012-1247-8 Authors Roland Weber, International HCH and Pesticide Association, Elmevej 14, 2840 Holte, Denmark Gulchohra Aliyeva, International HCH and Pesticide Association, Elmevej 14, 2840 Holte, Denmark John Vijgen, International HCH and Pesticide Association, Elmevej 14, 2840 Holte, Denmark Journal Environmental Science and Pollution Research Online ISSN 1614-7499 Print ISSN 0944-1344
    Print ISSN: 0944-1344
    Electronic ISSN: 1614-7499
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Frontiers
    In:  EPIC3Frontiers in Marine Science, Frontiers, 10, pp. 1234776-1234776, ISSN: 2296-7745
    Publication Date: 2024-02-13
    Description: Collaborations between artists and ocean scientists are becoming increasingly frequent. As the UN Ocean Decade (2021-2030) stresses the importance of engaging with the public, there is a growing interest in using art as a tool for communication as well as for scientific exploration and experimentation. This mini-review charts the current academic research on art-science collaborations and the ocean, focusing on literature where artists and scientists work together to produce something based on scientific research. The study finds that these relationships are never apolitical, are complex and develop differently depending on each project. In sum the paper will highlight that although the academic literature is limited, its diversity has the potential to reach numerous academic disciplines and that focusing on process and engagement should be a direction for further research to help broaden the academic reach of these important oceanic knowledges.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-31
    Description: The Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP) provides a globally coordinated network and oversight of 55 sustained decadal repeat hydrographic reference lines. GO-SHIP is part of the global ocean/climate observing systems (GOOS/GCOS) for study of physical oceanography, the ocean carbon, oxygen and nutrient cycles, and marine biogeochemistry. GO-SHIP enables assessment of the ocean sequestration of heat and carbon, changing ocean circulation and ventilation patterns, and their effects on ocean health and Earth's climate. Rapid quality control and open data release along with incorporation of the GO-SHIP effort in the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) in situ Observing Programs Support Center (JCOMMOPS) have increased the profile of, and participation in, the program and led to increased data use for a range of efforts. In addition to scientific discovery, GO-SHIP provides climate quality observations for ongoing calibration of measurements from existing and new autonomous platforms. This includes biogeochemical observations for the nascent array of biogeochemical (BGC)-Argo floats; temperature and salinity for Deep Argo; and salinity for the core Argo array. GO-SHIP provides the relevant suite of global, full depth, high quality observations and co-located deployment opportunities that, for the foreseeable future, remain crucial to maintenance and evolution of Argo's unique contribution to climate science. The evolution of GO-SHIP from a program primarily focused on physical climate to increased emphasis on ocean health and sustainability has put an emphasis on the addition of essential ocean variables for biology and ecosystems in the program measurement suite. In conjunction with novel automated measurement systems, ocean color, particulate matter, and phytoplankton enumeration are being explored as GO-SHIP variables. The addition of biological and ecosystem measurements will enable GO-SHIP to determine trends and variability in these key indicators of ocean health. The active and adaptive community has sustained the network, quality and relevance of the global repeat hydrography effort through societally important scientific results, increased exposure, and interoperability with new efforts and opportunities within the community. Here we provide key recommendations for the continuation and growth of GO-SHIP in the next decade.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-07-23
    Description: This open access book presents the results of three years collaboration between earth scientists and data scientists, in developing and applying data science methods for scientific discovery. The book will be highly beneficial for other researchers at senior and graduate level, interested in applying visual data exploration, computational approaches and scientifc workflows.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Book , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-01-28
    Description:    This study aims to examine how future climate, temperature and precipitation specifically, are expected to change under the A2, A1B, and B1 emission scenarios over the six states that make up the Southern Climate Impacts Planning Program (SCIPP): Oklahoma, Texas, Arkansas, Louisiana, Tennessee, and Mississippi. SCIPP is a member of the National Oceanic and Atmospheric Administration-funded Regional Integrated Sciences and Assessments network, a program which aims to better connect climate-related scientific research with in-the-field decision-making processes. The results of the study found that the average temperature over the study area is anticipated to increase by 1.7°C to 2.4°C in the twenty-first century based on the different emission scenarios with a rate of change that is more pronounced during the second half of the century. Summer and fall seasons are projected to have more significant temperature increases, while the northwestern portions of the region are projected to experience more significant increases than the Gulf coast region. Precipitation projections, conversely, do not exhibit a discernible upward or downward trend. Late twenty-first century exhibits slightly more precipitation than the early century, based on the A1B and B1 scenario, and fall and winter are projected to become wetter than the late twentieth century as a whole. Climate changes on the city level show that greater warming will happened in inland cities such as Oklahoma City and El Paso, and heavier precipitation in Nashville. These changes have profound implications for local water resources management as well as broader regional decision making. These results represent an initial phase of a broader study that is being undertaken to assist SCIPP regional and local water planning efforts in an effort to more closely link climate modeling to longer-term water resources management and to continue assessing climate change impacts on regional hazards management in the South. Content Type Journal Article Category Original Paper Pages 1-16 DOI 10.1007/s00704-011-0567-9 Authors Lu Liu, School of Civil Engineering and Environmental Science, University of Oklahoma, 120 David L. Boren Blvd., National Weather Center ARRC 4610 Suite, Norman, OK 73072, USA Yang Hong, School of Civil Engineering and Environmental Science, University of Oklahoma, 120 David L. Boren Blvd., National Weather Center ARRC 4610 Suite, Norman, OK 73072, USA James E. Hocker, Southern Climate Impacts Planning Program, Oklahoma Climate Survey, University of Oklahoma, Norman, OK, USA Mark A. Shafer, Southern Climate Impacts Planning Program, Oklahoma Climate Survey, University of Oklahoma, Norman, OK, USA Lynne M. Carter, Southern Climate Impacts Planning Program, Louisiana State University, Baton Rouge, LA, USA Jonathan J. Gourley, NOAA/National Severe Storms Laboratory, Norman, OK 73072, USA Christopher N. Bednarczyk, School of Civil Engineering and Environmental Science, University of Oklahoma, 120 David L. Boren Blvd., National Weather Center ARRC 4610 Suite, Norman, OK 73072, USA Bin Yong, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098 China Pradeep Adhikari, School of Civil Engineering and Environmental Science, University of Oklahoma, 120 David L. Boren Blvd., National Weather Center ARRC 4610 Suite, Norman, OK 73072, USA Journal Theoretical and Applied Climatology Online ISSN 1434-4483 Print ISSN 0177-798X
    Print ISSN: 0177-798X
    Electronic ISSN: 1434-4483
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-11-28
    Description:    Climate change is an issue of great importance for human rights, public health, and socioeconomic equity because of its diverse consequences overall as well as its disproportionate impact on vulnerable and socially marginalized populations. Vulnerability to climate change is determined by a community’s ability to anticipate, cope with, resist, and recover from the impact of major weather events. Climate change will affect industrial and agricultural sectors, as well as transportation, health, and energy infrastructure. These shifts will have significant health and economic consequences for diverse communities throughout California. Without proactive policies to address these equity concerns, climate change will likely reinforce and amplify current as well as future socioeconomic disparities, leaving low-income, minority, and politically marginalized groups with fewer economic opportunities and more environmental and health burdens. This review explores the disproportionate impacts of climate change on vulnerable groups in California and investigates the costs and benefits of the climate change mitigation strategies specified for implementation in the California Global Warming Solutions Act of 2006 (AB 32). Lastly, knowledge gaps, future research priorities, and policy implications are identified. Content Type Journal Article Pages 1-19 DOI 10.1007/s10584-011-0310-7 Authors Seth B. Shonkoff, Department of Environmental Science, Policy, and Management, Division of Society and Environment, University of California, Berkeley, 137 Mulford Hall, MC 3144, Berkeley, CA 94720, USA Rachel Morello-Frosch, Department of Environmental Science, Policy and Management & School of Public Health, University of California, Berkeley, 137 Mulford Hall, MC 3114, Berkeley, CA 94720, USA Manuel Pastor, Departments of Geography and American Studies and Ethnicity, University of Southern California, 3620 S. Vermont Ave, KAP-462, Los Angeles, CA 90089-0255, USA James Sadd, Department of Environmental Science and Geology, Occidental College, 1600 Campus Rd., Los Angeles, CA 90041, USA Journal Climatic Change Online ISSN 1573-1480 Print ISSN 0165-0009
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-01-14
    Description: Purpose   Global climate change (GCC), especially global warming, has affected the material cycling (e.g., carbon, nutrients, and organic chemicals) and the energy flows of terrestrial ecosystems. Persistent organic pollutants (POPs) were regarded as anthropogenic organic carbon (OC) source, and be coupled with the natural carbon (C) and nutrient biogeochemical cycling in ecosystems. The objective of this work was to review the current literature and explore potential coupling processes and mechanisms between POPs and biogeochemical cycles of C and nutrients in terrestrial ecosystems induced by global warming. Results and discussion   Global warming has caused many physical, chemical, and biological changes in terrestrial ecosystems. POPs environmental fate in these ecosystems is controlled mainly by temperature and biogeochemical processes. Global warming may accelerate the re-emissions and redistribution of POPs among environmental compartments via soil–air exchange. Soil–air exchange is a key process controlling the fate and transportation of POPs and terrestrial ecosystem C at regional and global scales. Soil respiration is one of the largest terrestrial C flux induced by microbe and plant metabolism, which can affect POPs biotransformation in terrestrial ecosystems. Carbon flow through food web structure also may have important consequences for the biomagnification of POPs in the ecosystems and further lead to biodiversity loss induced by climate change and POPs pollution stress. Moreover, the integrated techniques and biological adaptation strategy help to fully explore the coupling mechanisms, functioning and trends of POPs and C and nutrient biogeochemical cycling processes in terrestrial ecosystems. Conclusions and perspectives   There is increasing evidence that the environmental fate of POPs has been linked with biogeochemical cycles of C and nutrients in terrestrial ecosystems under GCC. However, the relationships between POPs and the biogeochemical cycles of C and nutrients are still not well understood. Further study is needed to explore the coupling mechanisms of POP environmental fate and C biogeochemical cycle by using the integrated techniques under GCC scenario and develop biological and ecological management strategies to mitigate GCC and environmental stressors. Content Type Journal Article Category SOILS, SEC 3 • REMEDIATION AND MANAGEMENT OF CONTAMINATED OR DEGRADED LANDS • REVIEW ARTICLE Pages 1-9 DOI 10.1007/s11368-011-0462-0 Authors Ying Teng, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 People’s Republic of China Zhihong Xu, Environmental Futures Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, QLD 4111, Australia Yongming Luo, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 People’s Republic of China Frédérique Reverchon, Environmental Futures Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, QLD 4111, Australia Journal Journal of Soils and Sediments Online ISSN 1614-7480 Print ISSN 1439-0108
    Print ISSN: 1439-0108
    Electronic ISSN: 1614-7480
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...