GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: A comprehensive understanding of the deep-sea environment and mining’s likely impacts is necessary to assess whether and under what conditions deep-seabed mining operations comply with the International Seabed Authority’s obligations to prevent ‘serious harm’ and ensure the ‘effective protection of the marine environment from harmful effects’ in accordance with the United Nations Convention on the Law of the Sea. A synthesis of the peer-reviewed literature and consultations with deep-seabed mining stakeholders revealed that, despite an increase in deep-sea research, there are few categories of publicly available scientific knowledge comprehensive enough to enable evidence-based decision-making regarding environmental management, including whether to proceed with mining in regions where exploration contracts have been granted by the International Seabed Authority. Further information on deep-sea environmental baselines and mining impacts is critical for this emerging industry. Closing the scientific gaps related to deep-seabed mining is a monumental task that is essential to fulfilling the overarching obligation to prevent serious harm and ensure effective protection, and will require clear direction, substantial resources, and robust coordination and collaboration. Based on the information gathered, we propose a potential high-level road map of activities that could stimulate a much-needed discussion on the steps that should be taken to close key scientific gaps before any exploitation is considered. These steps include the definition of environmental goals and objectives, the establishment of an international research agenda to generate new deep-sea environmental, biological, and ecological information, and the synthesis of data that already exist.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-06-14
    Description: We compare and contrast the ecological impacts of atmospheric and oceanic circulation patterns on polar and sub-polar marine ecosystems. Circulation patterns differ strikingly between the north and south. Meridional circulation in the north provides connections between the sub-Arctic and Arctic despite the presence of encircling continental landmasses, whereas annular circulation patterns in the south tend to isolate Antarctic surface waters from those in the north. These differences influence fundamental aspects of the polar ecosystems from the amount, thickness and duration of sea ice, to the types of organisms, and the ecology of zooplankton, fish, seabirds and marine mammals. Meridional flows in both the North Pacific and the North Atlantic oceans transport heat, nutrients, and plankton northward into the Chukchi Sea, the Barents Sea, and the seas off the west coast of Greenland. In the North Atlantic, the advected heat warms the waters of the southern Barents Sea and, with advected nutrients and plankton, supports immense biomasses of fish, seabirds and marine mammals. On the Pacific side of the Arctic, cold waters flowing northward across the northern Bering and Chukchi seas during winter and spring limit the ability of boreal fish species to take advantage of high seasonal production there. Southward flow of cold Arctic waters into sub-Arctic regions of the North Atlantic occurs mainly through Fram Strait with less through the Barents Sea and the Canadian Archipelago. In the Pacific, the transport of Arctic waters and plankton southward through Bering Strait is minimal. In the Southern Ocean, the Antarctic Circumpolar Current and its associated fronts are barriers to the southward dispersal of plankton and pelagic fishes from sub-Antarctic waters, with the consequent evolution of Antarctic zooplankton and fish species largely occurring in isolation from those to the north. The Antarctic Circumpolar Current also disperses biota throughout the Southern Ocean, and as a result, the biota tends to be similar within a given broad latitudinal band. South of the Southern Boundary of the ACC, there is a large-scale divergence that brings nutrient-rich water to the surface. This divergence, along with more localized upwelling regions and deep vertical convection in winter, generates elevated nutrient levels throughout the Antarctic at the end of austral winter. However, such elevated nutrient levels do not support elevated phytoplankton productivity through the entire Southern Ocean, as iron concentrations are rapidly removed to limiting levels by spring blooms in deep waters. However, coastal regions, with the upward mixing of iron, maintain greatly enhanced rates of production, especially in coastal polynyas. In these coastal areas, elevated primary production supports large biomasses of zooplankton, fish, seabirds, and mammals. As climate warming affects these advective processes and their heat content, there will likely be major changes in the distribution and abundance of polar biota, in particular the biota dependent on sea ice.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2024-04-22
    Description: The Arctic is greatly impacted by climate change. The increase in air temperature drives the thawing of permafrost and an increase in coastal erosion and river discharge. This leads to a greater input of sediment and organic matter into coastal waters, which substantially impacts the ecosystems by reducing light transmission through the water column and altering the biogeochemistry, but also the subsistence economy of local people, and changes in climate because of the transformation of organic matter into greenhouse gases. Yet, the quantification of suspended sediment in Arctic coastal and nearshore waters remains unsatisfactory due to the absence of dedicated algorithms to resolve the high loads occurring in the close vicinity of the shoreline. In this study we present the Arctic Nearshore Turbidity Algorithm (ANTA), the first reflectance-turbidity relationship specifically targeted towards Arctic nearshore waters that is tuned with in-situ measurements from the nearshore waters of Herschel Island Qikiqtaruk in the western Canadian Arctic. A semi-empirical model was calibrated for several relevant sensors in ocean color remote sensing, including MODIS, Sentinel 3 (OLCI), Landsat 8 (OLI), and Sentinel 2 (MSI), as well as the older Landsat sensors TM and ETM+. The ANTA performed better with Landsat 8 than with Sentinel 2 and Sentinel 3. The application of the ANTA to Sentinel 2 imagery that matches in-situ turbidity samples taken in Adventfjorden, Svalbard, shows transferability to nearshore areas beyond Herschel Island Qikiqtaruk.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Environmental Management, 181 . pp. 8-15.
    Publication Date: 2019-02-01
    Description: Highlights: • Authors use inconsistent definitions of key terms like driver and pressure. • An imprecise wording could induce misunderstanding between science and policy. • We provide definitions of key terms compatible with the DPSIR approach. Abstract: In the marine sciences an increasing number of studies on environmental changes, their causes, and environmental assessments emerged in recent years. Often authors use non-uniform and inconsistent definitions of key terms like driver, threats, pressures etc. Although all of these studies clearly define causal dependencies between the interacting socio-economic and environmental systems in an understandable way, still an overall imprecise wording could induce misunderstanding at higher policy levels when it comes to integrated ecosystems assessments. Therefore we recommend using unified definitions for a better communication between science and management within national, regional and international environmental policies, for example the European Marine Strategy Framework Directive (MSFD). With this article we provide definitions compatible with the driver-pressure-state-impact-response (DPSIR) approach. Although most examples are MSFD related and thus have a marine focus the definitions are intended to be equally applicable for other systems and are usable world-wide. We suggest sticking to these definitions for an easy and simplified knowledge transfer from science to management, since DPSIR model is already accepted as a helpful tool for structuring and communicating ecosystem analyses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-11-28
    Description: Publication year: 2011 Source: Journal of Hydrology, Available online 25 November 2011 Shahbaz Khan The sample papers collected in this special volume represent the interdisciplinary studies presented at a major international conference that took place in San Diego, USA, October 11 – 13, 2010 in collaboration with UNESCO’s International Hydrological Program (IHP) Hydrology for the Environment Life and Policy (HELP) network and the Elsevier Journal of Hydrology. This conference targeted the emerging interdisciplinary science themes at the interface between hydrology and other scientific disciplines, including climate change, biology, chemistry and social sciences. These subjects are of particular relevance to current global water crisis, since population increases and a changing climate is bringing new pressures on hydrological systems around the world. The papers presented at the conference focused on the following five interdisciplinary themes:•Hydrology and climate change.•Hydrology, bio-geochemistry and environmental management.•Hydrology, health and improved socio-economic conditions.•Hydrology, history and conflicts.•Hydrology: past, present and future developments.This effort has highlighted the need to further focus hydrological research at the interdisciplinary interfaces between biophysical, social and economic sciences to assist with evidence based legislation and policy making in real catchments while empowering stakeholders in pursuit of real answers.
    Print ISSN: 0022-1694
    Electronic ISSN: 1879-2707
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Microbial degradation of organic carbon in marine sediments is a key driver of global element cycles on multiple time scales. However, it is not known to what depth microorganisms alter organic carbon in marine sediments or how microbial rates of organic carbon processing change with depth, and thus time since burial, on a global scale. To better understand the connection between the dynamic carbon cycle and life’s limits in the deep subsurface, we have combined a number of global data sets with a reaction transport model (RTM) describing first, organic carbon degradation in marine sediments deposited throughout the Quaternary Period and second, a bioenergetic model for microbial activity. The RTM is applied globally, recognizing three distinct depositional environments – continental shelf, margin and abyssal zones. The results include the masses of particulate organic carbon, POC, stored in three sediment-depth layers: bioturbated Holocene (1.7 × 10^17 g C), non-bioturbated Holocene (2.6 × 10^18 g C) and Pleistocene (1.4 × 1020 g C) sediments. The global depth-integrated rates of POC degradation have been determined to be 6.8 × 10^13, 1.2 × 10^14 and 1.2 × 10^14 g C yr-1 for the same three layers, respectively. A number of maps depicting the distribution of POC, as well as the fraction that has been degraded have also been generated. Using POC degradation as a proxy for microbial catabolic activity, total heterotrophic processing of POC throughout the Quaternary is estimated to be between 10^-11 – 10^-6 g C cm-3 yr-1, depending on the time since deposition and location. Bioenergetic modeling reveals that laboratory-determined microbial maintenance powers are poor predictors of sediment biomass concentration, but that cell concentrations in marine sediments can be accurately predicted by combining bioenergetic models with the rates of POC degradation determined in this study. Our model can be used to quantitatively describe both the carbon cycle and microbial activity on a global scale for marine sediments less than 2.59 million years old.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Highlights • All known observations for Area of Particular Environmental Interest 6 presented. • Assess morphology, sediments, nodules, oceanography, biogeochemistry and ecology. • APEI-6 partially representative of nearby exploration areas yet clear differences. • Present scientific synthesis and management implications for Clarion Clipperton Zone. To protect the range of habitats, species, and ecosystem functions in the Clarion Clipperton Zone (CCZ), a region of interest for deep-sea polymetallic nodule mining in the Pacific, nine Areas of Particular Environmental Interest (APEIs) have been designated by the International Seabed Authority (ISA). The APEIs are remote, rarely visited and poorly understood. Here we present and synthesise all available observations made at APEI-6, the most north eastern APEI in the network, and assess its representativity of mining contract areas in the eastern CCZ. The two studied regions of APEI-6 have a variable morphology, typical of the CCZ, with hills, plains and occasional seamounts. The seafloor is predominantly covered by fine-grained sediments, and includes small but abundant polymetallic nodules, as well as exposed bedrock. The oceanographic parameters investigated appear broadly similar across the region although some differences in deep-water mass separation were evident between APEI-6 and some contract areas. Sediment biogeochemistry is broadly similar across the area in the parameters investigated, except for oxygen penetration depth, which reached 〉2 m at the study sites within APEI-6, deeper than that found at UK1 and GSR contract areas. The ecology of study sites in APEI-6 differs from that reported from UK1 and TOML-D contract areas, with differences in community composition of microbes, macrofauna, xenophyophores and metazoan megafauna. Some species were shared between areas although connectivity appears limited. We show that, from the available information, APEI-6 is partially representative of the exploration areas to the south yet is distinctly different in several key characteristics. As a result, additional APEIs may be warranted and caution may need to be taken in relying on the APEI network alone for conservation, with other management activities required to help mitigate the impacts of mining in the CCZ.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Despite the important role that volcanogenic aluminosilicate (VA) alteration has on elemental cycles in marine sediments, there is no mechanism to arrive at a global assessment of this process. To quantify the VA alteration rates from Japan, New Zealand (NZ), and Costa Rica, we developed a mass balance approach that is constrained by the strontium concentration and 87Sr/86Sr ratios in pore fluid, authigenic carbonates, and VA. We derived VA alteration rates ranging from 101 to 103 nmole Sr/m3 bulk sediment/yr with the highest rate obtained for Tuaheni, NZ (Site GeoB80202), which has the youngest sediment. We showed that 87Sr/86Sr ratios of VA derived from this mass balance approach are significantly higher than the reported ratios from volcanic glass samples, indicating a concomitant role of volcanogenic feldspar dissolution and/or authigenic clay formation. Most of the strontium released during VA alteration is precipitated as authigenic carbonate, with important implications for carbon inventories. The VA alteration rates derived from this approach can also be used to quantify the release of other critical elements, such as release of iron that can stimulate formation of Fe‑carbonates and/or fuel microbial activity at depth.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-22
    Description: Highlights • More diverse non-native taxa generally include more economically costly species. • Chordates, nematodes and pathogens are among significantly over-represented taxa. • Monetary cost magnitude links positively to numbers of costly invasive species. • Costs are biased towards a few ‘hyper-costly’ invasive species groups. • Future invasion rates will continue to harbour new economically costly species. Abstract A dominant syndrome of the Anthropocene is the rapid worldwide spread of invasive species with devastating environmental and socio-economic impacts. However, the dynamics underlying the impacts of biological invasions remain contested. A hypothesis posits that the richness of impactful invasive species increases proportionally with the richness of non-native species more generally. A competing hypothesis suggests that certain species features disproportionately enhance the chances of non-native species becoming impactful, causing invasive species to arise disproportionately relative to the numbers of non-native species. We test whether invasive species with reported monetary costs reflect global numbers of established non-native species among phyla, classes, and families. Our results reveal that numbers of invasive species with economic costs largely reflect non-native species richness among taxa (i.e., in 96 % of families). However, a few costly taxa were over- and under-represented, and their composition differed among environments and regions. Chordates, nematodes, and pathogenic groups tended to be the most over-represented phyla with reported monetary costs, with mammals, insects, fungi, roundworms, and medically-important microorganisms being over-represented classes. Numbers of costly invasive species increased significantly with non-native richness per taxon, while monetary cost magnitudes at the family level were also significantly related to costly invasive species richness. Costs were biased towards a few ‘hyper-costly’ taxa (such as termites, mosquitoes, cats, weevils, rodents, ants, and asters). Ordination analysis revealed significant dissimilarity between non-native and costly invasive taxon assemblages. These results highlight taxonomic groups which harbour disproportionately high numbers of costly invasive species and monetary cost magnitudes. Collectively, our findings support prevention of arrival and containment of spread of non-native species as a whole through effective strategies for mitigation of the rapidly amplifying impacts of invasive species. Yet, the hyper- costly taxa identified here should receive greater focus from managers to reduce impacts of current invasive species.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...