GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: A comprehensive understanding of the deep-sea environment and mining’s likely impacts is necessary to assess whether and under what conditions deep-seabed mining operations comply with the International Seabed Authority’s obligations to prevent ‘serious harm’ and ensure the ‘effective protection of the marine environment from harmful effects’ in accordance with the United Nations Convention on the Law of the Sea. A synthesis of the peer-reviewed literature and consultations with deep-seabed mining stakeholders revealed that, despite an increase in deep-sea research, there are few categories of publicly available scientific knowledge comprehensive enough to enable evidence-based decision-making regarding environmental management, including whether to proceed with mining in regions where exploration contracts have been granted by the International Seabed Authority. Further information on deep-sea environmental baselines and mining impacts is critical for this emerging industry. Closing the scientific gaps related to deep-seabed mining is a monumental task that is essential to fulfilling the overarching obligation to prevent serious harm and ensure effective protection, and will require clear direction, substantial resources, and robust coordination and collaboration. Based on the information gathered, we propose a potential high-level road map of activities that could stimulate a much-needed discussion on the steps that should be taken to close key scientific gaps before any exploitation is considered. These steps include the definition of environmental goals and objectives, the establishment of an international research agenda to generate new deep-sea environmental, biological, and ecological information, and the synthesis of data that already exist.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-28
    Description: Publication year: 2011 Source: Journal of Hydrology, Available online 25 November 2011 Shahbaz Khan The sample papers collected in this special volume represent the interdisciplinary studies presented at a major international conference that took place in San Diego, USA, October 11 – 13, 2010 in collaboration with UNESCO’s International Hydrological Program (IHP) Hydrology for the Environment Life and Policy (HELP) network and the Elsevier Journal of Hydrology. This conference targeted the emerging interdisciplinary science themes at the interface between hydrology and other scientific disciplines, including climate change, biology, chemistry and social sciences. These subjects are of particular relevance to current global water crisis, since population increases and a changing climate is bringing new pressures on hydrological systems around the world. The papers presented at the conference focused on the following five interdisciplinary themes:•Hydrology and climate change.•Hydrology, bio-geochemistry and environmental management.•Hydrology, health and improved socio-economic conditions.•Hydrology, history and conflicts.•Hydrology: past, present and future developments.This effort has highlighted the need to further focus hydrological research at the interdisciplinary interfaces between biophysical, social and economic sciences to assist with evidence based legislation and policy making in real catchments while empowering stakeholders in pursuit of real answers.
    Print ISSN: 0022-1694
    Electronic ISSN: 1879-2707
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    Publication Date: 2024-02-07
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize datasets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (E-FOS) are based on energy statistics and cement production data, while emissions from land-use change (E-LUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (G(ATM)) is computed from the annual changes in concentration. The ocean CO2 sink (S-OCEAN) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2 sink (S-LAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (B-IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as +/- 1 sigma. For the first time, an approach is shown to reconcile the difference in our E-LUC estimate with the one from national greenhouse gas inventories, supporting the assessment of collective countries' climate progress. For the year 2020, E-FOS declined by 5.4 % relative to 2019, with fossil emissions at 9.5 +/- 0.5 GtC yr(-1) (9.3 +/- 0.5 GtC yr(-1) when the cement carbonation sink is included), and E-LUC was 0.9 +/- 0.7 GtC yr(-1), for a total anthropogenic CO2 emission of 10.2 +/- 0.8 GtC yr(-1) (37.4 +/- 2.9 GtCO(2)). Also, for 2020, G(ATM) was 5.0 +/- 0.2 GtC yr-1 (2.4 +/- 0.1 ppm yr(-1)), S-OCEAN was 3.0 +/- 0.4 GtC yr(-1), and S-LAND was 2.9 +/- 1 GtC yr(-1), with a B-IM of -0.8 GtC yr(-1). The global atmospheric CO2 concentration averaged over 2020 reached 412.45 +/- 0.1 ppm. Preliminary data for 2021 suggest a rebound in E-FOS relative to 2020 of +4.8 % (4.2 % to 5.4 %) globally. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959-2020, but discrepancies of up to 1 GtC yr(-1) persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and datasets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this dataset (Friedlingstein et al., 2020, 2019; Le Quere et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at (Friedlingstein et al., 2021).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Highlights • All known observations for Area of Particular Environmental Interest 6 presented. • Assess morphology, sediments, nodules, oceanography, biogeochemistry and ecology. • APEI-6 partially representative of nearby exploration areas yet clear differences. • Present scientific synthesis and management implications for Clarion Clipperton Zone. To protect the range of habitats, species, and ecosystem functions in the Clarion Clipperton Zone (CCZ), a region of interest for deep-sea polymetallic nodule mining in the Pacific, nine Areas of Particular Environmental Interest (APEIs) have been designated by the International Seabed Authority (ISA). The APEIs are remote, rarely visited and poorly understood. Here we present and synthesise all available observations made at APEI-6, the most north eastern APEI in the network, and assess its representativity of mining contract areas in the eastern CCZ. The two studied regions of APEI-6 have a variable morphology, typical of the CCZ, with hills, plains and occasional seamounts. The seafloor is predominantly covered by fine-grained sediments, and includes small but abundant polymetallic nodules, as well as exposed bedrock. The oceanographic parameters investigated appear broadly similar across the region although some differences in deep-water mass separation were evident between APEI-6 and some contract areas. Sediment biogeochemistry is broadly similar across the area in the parameters investigated, except for oxygen penetration depth, which reached 〉2 m at the study sites within APEI-6, deeper than that found at UK1 and GSR contract areas. The ecology of study sites in APEI-6 differs from that reported from UK1 and TOML-D contract areas, with differences in community composition of microbes, macrofauna, xenophyophores and metazoan megafauna. Some species were shared between areas although connectivity appears limited. We show that, from the available information, APEI-6 is partially representative of the exploration areas to the south yet is distinctly different in several key characteristics. As a result, additional APEIs may be warranted and caution may need to be taken in relying on the APEI network alone for conservation, with other management activities required to help mitigate the impacts of mining in the CCZ.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Over two million leisure boats use the coastal areas of the Baltic Sea for recreational purposes. The majority of these boats are painted with toxic antifouling paints that release biocides into the coastal ecosystems and negatively impact non-targeted species. Regulations concerning the use of antifouling paints differ dramatically between countries bordering the Baltic Sea and most of them lack the support of biological data. In the present study, we collected data on biofouling in 17 marinas along the Baltic Sea coast during three consecutive boating seasons (May–October 2014, 2015 and 2016). In this context, we compared different monitoring strategies and developed a fouling index (FI) to characterise marinas according to the recorded biofouling abundance and type (defined according to the hardness and strength of attachment to the substrate). Lower FI values, i.e. softer and/or less abundant biofouling, were consistently observed in marinas in the northern Baltic Sea. The decrease in FI from the south-western to the northern Baltic Sea was partially explained by the concomitant decrease in salinity. Nevertheless, most of the observed changes in biofouling seemed to be determined by local factors and inter-annual variability, which emphasizes the necessity for systematic monitoring of biofouling by end-users and/or authorities for the effective implementation of non-toxic antifouling alternatives in marinas. Based on the obtained results, we discuss how monitoring programs and other related measures can be used to support adaptive management strategies towards more sustainable antifouling practices in the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-08
    Description: Highlights • Active hydrothermal vent ecosystems are extremely rare. • Vent ecosystems are recognized as vulnerable by international organizations. • Mineral resources at active vents would not contribute significantly to the global metal supply. • Effective networks that protect representative active vents cannot be ensured. • A prohibition on mining active vents is consistent with obligations for conservation. Abstract There is increasing interest in mining minerals on the seabed, including seafloor massive sulfide deposits that form at hydrothermal vents. The International Seabed Authority is currently drafting a Mining Code, including environmental regulations, for polymetallic sulfides and other mineral exploitation on the seabed in the area beyond national jurisdictions. This paper summarizes 1) the ecological vulnerability of active vent ecosystems and aspects of this vulnerability that remain subject to conjecture, 2) evidence for limited mineral resource opportunity at active vents, 3) non-extractive values of active vent ecosystems, 4) precedents and international obligations for protection of hydrothermal vents, and 5) obligations of the International Seabed Authority under the UN Convention on the Law of the Sea for protection of the marine environment from the impacts of mining. Heterogeneity of active vent ecosystems makes it extremely challenging to identify “representative” systems for any regional, area-based management approach to conservation. Protection of active vent ecosystems from mining impacts (direct and indirect) would set aside only a small fraction of the international seabed and its mineral resources, would contribute to international obligations for marine conservation, would have non-extractive benefits, and would be a precautionary approach.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-06-14
    Description: We compare and contrast the ecological impacts of atmospheric and oceanic circulation patterns on polar and sub-polar marine ecosystems. Circulation patterns differ strikingly between the north and south. Meridional circulation in the north provides connections between the sub-Arctic and Arctic despite the presence of encircling continental landmasses, whereas annular circulation patterns in the south tend to isolate Antarctic surface waters from those in the north. These differences influence fundamental aspects of the polar ecosystems from the amount, thickness and duration of sea ice, to the types of organisms, and the ecology of zooplankton, fish, seabirds and marine mammals. Meridional flows in both the North Pacific and the North Atlantic oceans transport heat, nutrients, and plankton northward into the Chukchi Sea, the Barents Sea, and the seas off the west coast of Greenland. In the North Atlantic, the advected heat warms the waters of the southern Barents Sea and, with advected nutrients and plankton, supports immense biomasses of fish, seabirds and marine mammals. On the Pacific side of the Arctic, cold waters flowing northward across the northern Bering and Chukchi seas during winter and spring limit the ability of boreal fish species to take advantage of high seasonal production there. Southward flow of cold Arctic waters into sub-Arctic regions of the North Atlantic occurs mainly through Fram Strait with less through the Barents Sea and the Canadian Archipelago. In the Pacific, the transport of Arctic waters and plankton southward through Bering Strait is minimal. In the Southern Ocean, the Antarctic Circumpolar Current and its associated fronts are barriers to the southward dispersal of plankton and pelagic fishes from sub-Antarctic waters, with the consequent evolution of Antarctic zooplankton and fish species largely occurring in isolation from those to the north. The Antarctic Circumpolar Current also disperses biota throughout the Southern Ocean, and as a result, the biota tends to be similar within a given broad latitudinal band. South of the Southern Boundary of the ACC, there is a large-scale divergence that brings nutrient-rich water to the surface. This divergence, along with more localized upwelling regions and deep vertical convection in winter, generates elevated nutrient levels throughout the Antarctic at the end of austral winter. However, such elevated nutrient levels do not support elevated phytoplankton productivity through the entire Southern Ocean, as iron concentrations are rapidly removed to limiting levels by spring blooms in deep waters. However, coastal regions, with the upward mixing of iron, maintain greatly enhanced rates of production, especially in coastal polynyas. In these coastal areas, elevated primary production supports large biomasses of zooplankton, fish, seabirds, and mammals. As climate warming affects these advective processes and their heat content, there will likely be major changes in the distribution and abundance of polar biota, in particular the biota dependent on sea ice.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2024-02-07
    Description: Highlights: • Overview on oxidative treatment processes for different industrial applications • Compilation of disinfection by-product types/concentrations in marine water uses • Estimation of global DBP inputs into marine water from different industries • Comparison of anthropogenic bromoform production to emissions from natural sources Abstract: Oxidative treatment of seawater in coastal and shipboard installations is applied to control biofouling and/or minimize the input of noxious or invasive species into the marine environment. This treatment allows a safe and efficient operation of industrial installations and helps to protect human health from infectious diseases and to maintain the biodiversity in the marine environment. On the downside, the application of chemical oxidants generates undesired organic compounds, so-called disinfection by-products (DBPs), which are discharged into the marine environment. This article provides an overview on sources and quantities of DBP inputs, which could serve as basis for hazard analysis for the marine environment, human health and the atmosphere. During oxidation of marine water, mainly brominated DBPs are generated with bromoform (CHBr3) being the major DBP. CHBr3 has been used as an indicator to compare inputs from different sources. Total global annual volumes of treated seawater inputs resulting from cooling processes of coastal power stations, from desalination plants and from ballast water treatment in ships are estimated to be 470 – 800 × 109 m3, 46 × 109 m3 and 3.5 × 109 m3, respectively. Overall, the total estimated anthropogenic bromoform production and discharge adds up to 13.5 – 21.8 × 106 kg/a (kg per year) with contributions of 11.8 – 20.1 × 106 kg/a from cooling water treatment, 0.89 × 106 kg/a from desalination and 0.86 × 106 kg/a from ballast water treatment. This equals approximately 2 – 6 % of the natural bromoform emissions from marine water, which is estimated to be 385 – 870 × 106 kg/a.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...