GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • OceanRep  (228)
  • 2010-2014  (228)
  • 1
    Publication Date: 2022-08-18
    Description: 38th IAMSLIC Conference: Anchorage, Alaska, U.S.A., August 26-30, 2012, held jointly with the 24th Cyamus Meeting: August 24-25
    Type: Proceedings , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-07-19
    Description: Varna, BULGARIA 13-15 May, 2013
    Type: Proceedings , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2022-08-18
    Description: 37th IAMSLIC Conference & 5th AFRIAMSLIC Conference, Zanzibar, Tanzania, October 16-21, 2011
    Type: Proceedings , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-07-17
    Description: Phytoplankton and bacteria are sensitive indicators of environmental change. The temporal development of these key organisms was monitored from 1988 to the end of 2007 at the time series station Boknis Eck in the western Baltic Sea. This period was characterized by the adaption of the Baltic Sea ecosystem to changes in the environmental conditions caused by the conversion of the political system in the southern and eastern border states, accompanied by the general effects of global climate change. Measured variables were chlorophyll, primary production, bacteria number, -biomass and -production, glucose turnover rate, macro-nutrients, pH, temperature and salinity. Negative trends with time were recorded for chlorophyll, bacteria number, bacterial biomass and bacterial production, nitrate, ammonia, phosphate, silicate, oxygen and salinity while temperature, pH, and the ratio between bacteria numbers and chlorophyll increased. Strongest reductions with time occurred for the annual maximum values, e.g. for chlorophyll during the spring bloom or for nitrate during winter, while the annual minimum values remained more stable. In deep water above sediment the negative trends of oxygen, nitrate, phosphate and bacterial variables as well as the positive trend of temperature were similar to those in the surface while the trends of salinity, ammonia and silicate were opposite to those in the surface. Decreasing oxygen, even in the surface layer, was of particular interest because it suggested enhanced recycling of nutrients from the deep hypoxic zones to the surface by vertical mixing. The long-term seasonal patterns of all variables correlated positively with temperature, except chlorophyll and salinity. Salinity correlated negatively with all bacterial variables (as well as precipitation) and positively with chlorophyll. Surprisingly, bacterial variables did not correlate with chlorophyll, which may be inherent with the time lag between the peaks of phytoplankton and bacteria during spring. Compared to the 20-yr averages of the environmental and microbial variables, the strongest negative deviations of corresponding annual averages were measured about ten years after political change for nitrate and bacterial secondary production (~ −60%), followed by chlorophyll (−50%) and bacterial biomass (−40%). Considering the circulation of surface currents in the Baltic Sea we interpret the observed patterns of the microbial variables at the Boknis Eck time series station as a consequence of the improved management of water resources after 1989 and – to a minor extent – the trends of the climate variables salinity and temperature.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Biological and environmental changes are creating a growing demand for historical and global data sets. Comparing up-to-date ecological and biological findings with historical statements has become a major part of scientific work in the field of ecology. This evaluation and comparison procedure is very time-consuming while the availability of raw data is very low. Comparisons between original findings – if available – require a lot of work from print publication to digitalization or transformation to appropriate data formats. The effective use of working capacity is a general issue and has become important, should the use of information technologies be invoked to minimize time-wasting copy and paste operations. In this paper we aim to present a working repository for terrestrial biological data. The implementation of this type of data repository will provide various services to participating scientists as long as the final aim is the publication of these repositories. Furthermore, the security and long-term availability of environmental data is an issue of increasing importance to the scientific community. Unrepeatable sampling events and any data thus obtained are precious in time series analysis. For this reason, a well-structured storage of data is necessary for easy accessibility, retrieval and comparability. This is an important issue for the community of environmental scientists. The need to construct and implement repositories should prevail against all hitches and we are therefore describing our on-going task with the primary population of this kind of data repository. A biological and ecological information system is a matter of public interest and should also be a key issue for ecologists.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Bergey’s International Society for Microbial Systematics
    In:  The Bulletin of BISMiS, 2 . pp. 107-115.
    Publication Date: 2019-01-21
    Description: From the establishment of proper cultivation conditions of phototrophic sulfur bacteria 50 years ago up to today significant improvements have been made to systematically treat the phototrophic green and purple sulfur bacteria and identify them in environmental communities. Important steps for these improvements were first of all the description of a large number of pure cultures representing a proper fraction of environmental diversity, their correct taxonomic treatment and the clear definition of the taxa. Further important steps were the establishment of a phylogenetics-based taxonomy supported by 16S rRNA gene sequences and the demonstration of congruence between phylogenies based on 16S rRNA genes and functional genes. The formation of a large database of fmoA genes of green sulfur bacteria and of pufLM genes of purple sulfur bacteria and their obvious phylogenetic congruence with the 16S rRNA gene enabled detailed studies of environmental communities of these bacteria and the recognition of species and genera in natural habitats. The comprehensive studies of selected habitats yielded promising results and demonstrated the potential of this approach for the systematic characterization of environmental communities.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-09-06
    Description: This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km2 eelgrass (maximum 〉2100 km2), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe. Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4–6 spp.) of angiosperms overall, but eelgrass productivity is low (〈2 g dw m-2 d-1) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3–10 g dw m-2 d-1) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic. Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows. The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    ECO2 Project Office
    In:  ECO2 Deliverable, D5.2 . ECO2 Project Office, Kiel, Germany, 13 pp.
    Publication Date: 2019-03-11
    Description: Public fear for environmental and health impacts or potential leakage of CO2 from geological reservoirs is among the reasons why over the past decade CCS has not yet been deployed on a large enough scale so as to meaningfully contribute to mitigate climate change. Storage of CO2 under the seabed moves this climate mitigation option away from inhabited areas and could thereby take away some of the opposition towards this technology. Given that in the event of CO2 leakage for sub-seabed CCS the ocean would function as buffer for receiving this greenhouse gas, rather than the atmosphere, offshore CCS could particularly address concerns over the climatic impacts of CO2 seepage. In this paper we point out that recent geological studies confirm that leakage for individual offshore CCS operations may be highly unlikely from a technical point of view, if storage sites are well chosen, well managed and well monitored. But we argue that on a global long-term scale, for an ensemble of thousands or millions of storage sites, leakage of CO2 could take place in certain cases and/or countries for e.g. economic, institutional, legal or safety cultural reasons. We investigated what the impact could be in terms of temperature increase and ocean acidification if leakage would nevertheless occur, and addressed the question what the relative roles could be of on- and offshore CCS if mankind desires to divert the atmospheric damages resulting from climate change. For this purpose, we constructed a top-down energy-environment-economy model, with which we performed a probabilistic cost-benefit analysis of climate change mitigation with on- and offshore CCS as specific CO2 abatement options. One of our main conclusions is that even if there is non-zero leakage for CCS activity on a global scale, there is high probability that both onshore and offshore CCS could – on economic grounds – still account for anywhere between 20% and 80% of all future CO2 abatement efforts under a broad range of CCS cost assumptions.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-07-19
    Description: 17-20 May 2011 Fort de Vaise, 25 Boulevard de Saint Exupery, Lyon, France
    Type: Proceedings , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...