GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:300  (25)
  • 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques  (1)
  • 2010-2014  (26)
Document type
Language
Years
Year
  • 1
    Publication Date: 2019-04-01
    Description: This paper attempts to assess whether renewable energy self-sufficiency can be achieved in the crop production and processing sector in Tanzania and if this could be accomplished in an environmentally sustainable manner. In order to answer these questions the theoretical energy potential of process residues from commercially produced agricultural crops in Tanzania is evaluated. Furthermore, a set of sustainability indicators with focus on environmental criteria is applied to identify risks and opportunities of using these residues for energy generation. In particular, the positive and negative effects on the land-use-system (soil fertility, water use and quality, biodiversity, etc.) are evaluated. The results show that energy generation with certain agricultural process residues could not only improve and secure the energy supply but could also improve the sustainability of current land-use practices.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-02-18
    Description: The multi-level perspective has successfully been applied to the analysis of complex sector transitions in the energy, the health or the food production sector. Is this framework also helpful to understand and give prescriptive advice for sustainability transformations within a national science system? Based on a comprehensive study of the diffusion of transdisciplinary sustainability research in Germany, this article analyzes the institutional dimension of a changing science-society relation in the German science system. It uses the multi-level perspective as a fruitful heuristic in order to identify potential pathways for a broader diffusion of transdisciplinary sustainability science. The importance of niche coalitions of frontrunner universities and research institutes are highlighted.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Society’s needs for a network of in situ ocean observing systems cross many areas of earth and marine science. Here we review the science themes that benefit from data supplied from ocean observatories. Understanding from existing studies is fragmented to the extent that it lacks the coherent long-term monitoring needed to address questions at the scales essential to understand climate change and improve geo-hazard early warning. Data sets from the deep sea are particularly rare with long-term data available from only a few locations worldwide. These science areas have impacts on societal health and well-being and our awareness of ocean function in a shifting climate. Substantial efforts are underway to realise a network of open-ocean observatories around European Seas that will operate over multiple decades. Some systems are already collecting high-resolution data from surface, water column, seafloor, and sub-seafloor sensors linked to shore by satellite or cable connection in real or near-real time, along with samples and other data collected in a delayed mode. We expect that such observatories will contribute to answering major ocean science questions including: How can monitoring of factors such as seismic activity, pore fluid chemistry and pressure, and gas hydrate stability improve seismic, slope failure, and tsunami warning? What aspects of physical oceanography, biogeochemical cycling, and ecosystems will be most sensitive to climatic and anthropogenic change? What are natural versus anthropogenic changes? Most fundamentally, how are marine processes that occur at differing scales related? The development of ocean observatories provides a substantial opportunity for ocean science to evolve in Europe. Here we also describe some basic attributes of network design. Observatory networks provide the means to coordinate and integrate the collection of standardised data capable of bridging measurement scales across a dispersed area in European Seas adding needed certainty to estimates of future oceanic conditions. Observatory data can be analysed along with other data such as those from satellites, drifting floats, autonomous underwater vehicles, model analysis, and the known distribution and abundances of marine fauna in order to address some of the questions posed above. Standardised methods for information management are also becoming established to ensure better accessibility and traceability of these data sets and ultimately to increase their use for societal benefit. The connection of ocean observatory effort into larger frameworks including the Global Earth Observation System of Systems (GEOSS) and the Global Monitoring of Environment and Security (GMES) is integral to its success. It is in a greater integrated framework that the full potential of the component systems will be realised.
    Description: Published
    Description: 1-33
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Seafloor and water columnobservatories ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability ; 03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.08. Risk::05.08.01. Environmental risk ; 05. General::05.08. Risk::05.08.02. Hydrogeological risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-11-23
    Description: It is widely accepted that environmental awareness is essential, yet does not inevitably lead to responsible use of resources. Additional factors on the individual level include the meaning constructed by the term "resources" and the individual and social norms that influence the relevant behavior. Current didactic concepts do not take into account such aspects. Therefore, this article uses a didactic-psychological approach for designing an educational concept for raising awareness for a responsible use of natural resources. Combining insights of environmental psychology and of constructivist didactics, a general principal of "norm-oriented interpretation learning" is outlined to enrich the didactic debate on responsible and efficient resource use. Based on the presentation of a qualifying module for resource efficiency consultants as a practical example of resource education, a new didactical approach, namely "open-didactic exploration" (short form: ODE) is introduced. The article discusses the theory-based elements of ODE and illustrates a step by step process for designing educational materials. This adds to the theoretical debate about a didactic design for resource oriented education. Furthermore, this method can be directly used by practitioners developing education and training material (e.g., teachers, trainers in vocational education). The Wuppertal Institute developed and applied this method in numerous projects. The conclusion and outlook discusses future expectations and scope of the introduced ODE method as a contribution to foster "norm-oriented interpretation learning", suggesting perspectives for further development.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-02-18
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy
    Publication Date: 2022-12-05
    Description: Another summit of change, known as Rio+20, has passed in summer 2012, nourishing the rumours of a green economy. Building up a green economy seems to be the all over recipe for different crises of capitalism, among them climate change and resource scarcity. Yet efficiency and consistency, as their main strategies, do not suffice to reach sustainable levels, as they cause rebound effects and keep stimulating economy growth. Obviously, there are limits to green growth, too. Can we conceive an economy, and respective economic institutions, that serve human needs and wealth without a built-in necessity to grow? What kind of political, mental, and individual changes does a sufficiency economy require? And what are perspectives and policies to actually start implementing it? Just before Rio +20 the symposium "Economy of Sufficiency", devoted to Wolfgang Sachs on the occasion of his 65th birthday in 2011, examined these questions in three dimensions. Accordingly this selection of contributions to the symposium follows the chapters "Wealth in diversity" (Ashok Khosla, Marianne Gronemeyer, Vandana Shiva), "Enjoyable limits" (Richard B. Norgaard, Tim Jackson) and "Creating commons" (Ezio Manzini, Silke Helfrich). The essays indicate the historical development of the ideas on a sufficiency economy. Wandering through discourses of sustainable development for several decades, the authors map the range of perspectives, practices as well as barriers and bridge them between cultures, agencies and schools.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-02-18
    Description: The use of models to study the dynamics of transitions is challenging because of several aspects of transitions, notably complexity, multi-domain and multi-level interactions. These challenges are shared by other research areas that extensively make use of models. In this article we survey experiences and methodological approaches developed in the research areas of social-ecological modeling, integrated assessment, and environmental modeling, and derive lessons to be learnt for model use in transition studies. In order to account for specific challenges associated with different kinds of model applications we classify models according to their uses: for understanding transitions, for providing case-specific policy advice, and for facilitating stakeholder processes. The assessment reveals promising research directions for transition modeling, such as model-to-model analysis, pattern-oriented modeling, advanced sensitivity analysis, development of a shared conceptual framework, and use of modeling protocols.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-11-23
    Description: The need for recycling obsolete mobile phones has significantly increased with their rapidly growing worldwide production and distribution. Return and recycling rates are quite low; people tend to keep old, unused phones at home instead of returning them for recycling or further use because of a lack of knowledge and acceptance of return programmes. Thus far, individual use and recycling behavior has not shown any trend towards more sustainable patterns. Consequently, an increased awareness is needed for the high environmental and social impact throughout the whole value chain of a mobile phone - there is simply a lack of information and knowledge regarding sustainability issues around the mobile phone. A teaching material was therefore developed in a German research project, based on the concept of the ecological rucksack, presenting comprehensive information about the value chain of a mobile phone. Its application in different schools led to an increased awareness and interest among pupils for the connection between sustainability, resources and mobile phones. Based on these research results, this paper analyses young people’s knowledge of sustainability issues linked to their mobile phones and their acceptance of more sustainable behavioral patterns regarding their mobile, including return and recycling programmes.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Berlin : German Advisory Council on Global Change
    Publication Date: 2018-11-23
    Description: The year 2015 has special importance for the transformation towards sustainable development. New Sustainable Development Goals (SDGs) are then supposed to replace the Millennium Development Goals (MDGs). The aim is to offer a new orientation for political action in the coming decades. The WBGU recommends orienting the new catalogue of goals towards the key message of the 1992 Earth Summit: that development and environmental protection must be considered together and do not contradict each other. The SDGs should not be reduced to poverty eradication, but must address all dimensions of sustainable development. In particular, global environmental change must be incorporated, otherwise even poverty eradication will become impossible. Up to now, too little attention has been paid to this link in the ongoing discourse on SDGs. Although many reports mention the concept of planetary guard rails or planetary boundaries, they do not back this up with specific targets. The WBGU presents recommendations on how guard rails for global environmental problems should be incorporated in the SDG catalogue and operationalized by means of corresponding targets.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-11-10
    Description: Our perception of design is changing, for design today is no longer concerned only with aesthetics. Now the key factors are interdisciplinary competence and approaches to problem solving. Both politicians as well as businesses recognise design's hybridity and increasingly implement it as a driver of sustainable development (see Chap. 2: Design as a Key Management Factor for Sustainability). But what exactly does "sustainability" mean? What does it mean in this specific context? People must make use of natural resources to meet their basic needs. In this process, resources are transferred into commercial circulation and usually transformed into products with a particular function. Yet the environment is limited and humanity uses more resources than the Earth can sustainably provide. It is time to rethink and generate the same usage while consuming fewer resources (see Chap. 3: Environmental Space - Challenging Transitions). Most countries have incorporated sustainability strategies into their political agendas in order to counteract the threats of climate change caused by the overuse of natural resources, high CO2 emissions, and other factors. The indicators for these strategies vary greatly from country to country (see Chap. 4: Sustainability - Challenges, Politics, Indicators). These indicators need to be taken into account if we are to successfully implement a product or service within a specific context. A concept can only be successful when country-specific indicators are taken into account and the societal context is incorporated into the plan right from the start. The goal is to develop services that support national sustainability targets in production and consumption systems (see Chap. 5: Managing Sustainable Development). When it comes to companies, these changes can simply be introduced in the form of services or products. In the end, it is the users who decide on the success or failure of innovative solutions by either integrating them into their daily lives or ignoring them. Solutions will only be integrated into users' lives when their role within the social framework remains unchallenged by behavioural transformations caused by use of the solution. In order for users to be able to adopt innovations, sustainable development must take place simultaneously on many different levels. These multi-levelled transitions allow for the transformation of society as a whole. Designers can act as agents of change by providing the needed innovations (see Chap. 6: Transition Requires Change Agents for Sustainability). If we are to develop suitable solutions and new approaches, the real needs have to be analysed at the beginning of the development process. New physical products, which frequently result in auxiliary products, are often developed without taking into account the overall context, whereas the development of service-orientated solutions is ignored. A physical product is not absolutely necessary. A service (which is naturally dependent on physical products) can usually fulfil the need just as well - or perhaps even better and at a lower cost – while using fewer or no resources (see Chap. 7: Needs & Services - An Approach). There are a variety of possible approaches to integrate sustainability into the design process (see Chap. 8: Design Process). Precisely which solution is "most or more sustainable" (this is dependent on the defined targets and the indicators used) is often not immediately obvious, and we must turn to a set of methods for a transparent and tangible assessment (see Chap. 9: Sustainability Assessment in Design - Overview and Integration of Methods).
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...