GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Frontiers
    In:  EPIC3Frontiers in Marine Science, Frontiers, 10, pp. 1234776-1234776, ISSN: 2296-7745
    Publication Date: 2024-02-13
    Description: Collaborations between artists and ocean scientists are becoming increasingly frequent. As the UN Ocean Decade (2021-2030) stresses the importance of engaging with the public, there is a growing interest in using art as a tool for communication as well as for scientific exploration and experimentation. This mini-review charts the current academic research on art-science collaborations and the ocean, focusing on literature where artists and scientists work together to produce something based on scientific research. The study finds that these relationships are never apolitical, are complex and develop differently depending on each project. In sum the paper will highlight that although the academic literature is limited, its diversity has the potential to reach numerous academic disciplines and that focusing on process and engagement should be a direction for further research to help broaden the academic reach of these important oceanic knowledges.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-07
    Description: Coastal water quality in urban cities is increasingly impacted by human activities such as agricultural runoff, sewage discharges, and poor sanitation. However, environmental factors controlling bacteria abundance remain poorly understood. The study employed multiple indicators to assess ten beach water qualities in Ghana during minor wet seasons. Environmental parameters (e.g. temperature, electrical conductivity, total dissolved solids) were measured in situ using the Horiba multiple parameter probe. Surface water samples were collected to measure total suspended solids, nutrients, and chlorophyll-a via standard methods and bacteria determination through membrane filtration. Environmental parameters measured showed no significant variation for the sample period. However, bacteria loads differ significantly (p = 0.024) among the beaches and influenced significantly by nitrate (55.3%, p = 0.02) and total dissolved solids (17.1%, p = 0.017). The baseline study detected an increased amount of total coliforms and faecal indicator bacteria (Escherichia coli and Enterococcus spp.) in beach waters along the coast of Ghana, suggesting faecal contamination, which can pose health risks. The mean ± standard deviations of bacteria loads in beach water are total coliforms (4.06 × 103 ± 4.16 × 103 CFU/100 mL), E. coli (7.06 × 102 ± 1.72 × 103 CFU/100 mL), and Enterococcus spp. (6.15 × 102 ± 1.75 × 103 CFU/100 mL). Evidence of pollution calls for public awareness to prevent ecological and health-related risks and policy reforms to control coastal water pollution. Future research should focus on identifying the sources of contamination in the tropical Atlantic region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-10-30
    Description: 〈jats:p〉In many of the Pacific Islands, local communities have long-held cultural and spiritual attachments to the sea, in particular to species and specific marine areas, processes, habitats, islands, and natural seabed formations. Traditional knowledge, customary marine management approaches and integrated relationships between biodiversity, ecosystems and local communities promote conservation and ensure that marine benefits are reaped in a holistic, sustainable and equitable manner. However, the interaction between local traditional knowledge, contemporary scientific approaches to marine resource management and specific regulatory frameworks has often been challenging. To some extent, the value of community practices and customary law, which have provided an incentive for regional cooperation and coordination around ocean governance, is acknowledged in several legal systems in the Pacific and a number of regional and international instruments, but this important connection can be further enhanced. In this article we present a science-based overview of the marine habitats that would be affected by deep seabed mining (DSM) along with an analysis of some traditional dimensions and cultural/societal aspects of marine resource management. We then assess whether the applicable legal frameworks at different levels attach sufficient importance to these traditional dimensions and to the human and societal aspects of seabed (mineral) resource management in the region. On the basis of this analysis, we identify best practices and formulate recommendations with regard to the current regulatory frameworks and seabed resource management approaches. Indeed, the policies and practices developed in the Pacific could well serve as a suitable model elsewhere to reconcile commercial, ecological, cultural and social values within the context of deep sea mineral exploitation in addition to sustaining the Human Well-being and Sustainable Livelihoods (HWSL) of the Pacific communities and the health of the Global Ocean.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-08-01
    Description: Zooplankton plays a major role in ocean food webs and biogeochemical cycles, and provides major ecosystem services as a main driver of the biological carbon pump and in sustaining fish communities. Zooplankton is also sensitive to its environment and reacts to its changes. To better understand the importance of zooplankton, and to inform prognostic models that try to represent them, spatially-resolved biomass estimates of key plankton taxa are desirable. In this study we predict, for the first time, the global biomass distribution of 19 zooplankton taxa (1-50 mm Equivalent Spherical Diameter) using observations with the Underwater Vision Profiler 5, a quantitative in situ imaging instrument. After classification of 466,872 organisms from more than 3,549 profiles (0-500 m) obtained between 2008 and 2019 throughout the globe, we estimated their individual biovolumes and converted them to biomass using taxa-specific conversion factors. We then associated these biomass estimates with climatologies of environmental variables (temperature, salinity, oxygen, etc.), to build habitat models using boosted regression trees. The results reveal maximal zooplankton biomass values around 60°N and 55°S as well as minimal values around the oceanic gyres. An increased zooplankton biomass is also predicted for the equator. Global integrated biomass (0-500 m) was estimated at 0.403 PgC. It was largely dominated by Copepoda (35.7%, mostly in polar regions), followed by Eumalacostraca (26.6%) Rhizaria (16.4%, mostly in the intertropical convergence zone). The machine learning approach used here is sensitive to the size of the training set and generates reliable predictions for abundant groups such as Copepoda (R2 ≈ 20-66%) but not for rare ones (Ctenophora, Cnidaria, R2 〈 5%). Still, this study offers a first protocol to estimate global, spatially resolved zooplankton biomass and community composition from in situ imaging observations of individual organisms. The underlying dataset covers a period of 10 years while approaches that rely on net samples utilized datasets gathered since the 1960s. Increased use of digital imaging approaches should enable us to obtain zooplankton biomass distribution estimates at basin to global scales in shorter time frames in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: In this paper, we outline the need for a coordinated international effort toward the building of an open-access Global Ocean Oxygen Database and ATlas (GO2DAT) complying with the FAIR principles (Findable, Accessible, Interoperable, and Reusable). GO2DAT will combine data from the coastal and open ocean, as measured by the chemical Winkler titration method or by sensors (e.g., optodes, electrodes) from Eulerian and Lagrangian platforms (e.g., ships, moorings, profiling floats, gliders, ships of opportunities, marine mammals, cabled observatories). GO2DAT will further adopt a community-agreed, fully documented metadata format and a consistent quality control (QC) procedure and quality flagging (QF) system. GO2DAT will serve to support the development of advanced data analysis and biogeochemical models for improving our mapping, understanding and forecasting capabilities for ocean O2 changes and deoxygenation trends. It will offer the opportunity to develop quality-controlled data synthesis products with unprecedented spatial (vertical and horizontal) and temporal (sub-seasonal to multi-decadal) resolution. These products will support model assessment, improvement and evaluation as well as the development of climate and ocean health indicators. They will further support the decision-making processes associated with the emerging blue economy, the conservation of marine resources and their associated ecosystem services and the development of management tools required by a diverse community of users (e.g., environmental agencies, aquaculture, and fishing sectors). A better knowledge base of the spatial and temporal variations of marine O2 will improve our understanding of the ocean O2 budget, and allow better quantification of the Earth’s carbon and heat budgets. With the ever-increasing need to protect and sustainably manage ocean services, GO2DAT will allow scientists to fully harness the increasing volumes of O2 data already delivered by the expanding global ocean observing system and enable smooth incorporation of much higher quantities of data from autonomous platforms in the open ocean and coastal areas into comprehensive data products in the years to come. This paper aims at engaging the community (e.g., scientists, data managers, policy makers, service users) toward the development of GO2DAT within the framework of the UN Global Ocean Oxygen Decade (GOOD) program recently endorsed by IOC-UNESCO. A roadmap toward GO2DAT is proposed highlighting the efforts needed (e.g., in terms of human resources).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Biomolecular ocean observing and research is a rapidly evolving field that uses omics approaches to describe biodiversity at its foundational level, giving insight into the structure and function of marine ecosystems over time and space. It is an especially effective approach for investigating the marine microbiome. To mature marine microbiome research and operations within a global ocean biomolecular observing network (OBON) for the UN Decade of Ocean Science for Sustainable Development and beyond, research groups will need a system to effectively share, discover, and compare “omic” practices and protocols. While numerous informatic tools and standards exist, there is currently no global, publicly-supported platform specifically designed for sharing marine omics [or any omics] protocols across the entire value-chain from initiating a study to the publication and use of its results. Toward that goal, we propose the development of the Minimum Information for an Omic Protocol (MIOP), a community-developed guide of curated, standardized metadata tags and categories that will orient protocols in the value-chain for the facilitated, structured, and user-driven discovery of suitable protocol suites on the Ocean Best Practices System. Users can annotate their protocols with these tags, or use them as search criteria to find appropriate protocols. Implementing such a curated repository is an essential step toward establishing best practices. Sharing protocols and encouraging comparisons through this repository will be the first steps toward designing a decision tree to guide users to community endorsed best practices.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The UN Decade of Ocean Science for Sustainable Development (Ocean Decade) challenges marine science to better inform and stimulate social and economic development while conserving marine ecosystems. To achieve these objectives, we must make our diverse methodologies more comparable and interoperable, expanding global participation and foster capacity development in ocean science through a new and coherent approach to best practice development. We present perspectives on this issue gleaned from the ongoing development of the UNESCO Intergovernmental Oceanographic Commission (IOC) Ocean Best Practices System (OBPS). The OBPS is collaborating with individuals and programs around the world to transform the way ocean methodologies are managed, in strong alignment with the outcomes envisioned for the Ocean Decade. However, significant challenges remain, including: (1) the haphazard management of methodologies across their lifecycle, (2) the ambiguous endorsement of what is "best" and when and where one method may be applicable vs. another, and (3) the inconsistent access to methodological knowledge across disciplines and cultures. To help address these challenges, we recommend that sponsors and leaders in ocean science and education promote consistent documentation and convergence of methodologies to: create and improve context-dependent best practices; incorporate contextualized best practices into Ocean Decade Actions; clarify who endorses which method and why; create a global network of complementary ocean practices systems; and ensure broader consistency and flexibility in international capacity development.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Zooplankton plays a major role in ocean food webs and biogeochemical cycles, and provides major ecosystem services as a main driver of the biological carbon pump and in sustaining fish communities. Zooplankton is also sensitive to its environment and reacts to its changes. To better understand the importance of zooplankton, and to inform prognostic models that try to represent them, spatially-resolved biomass estimates of key plankton taxa are desirable. In this study we predict, for the first time, the global biomass distribution of 19 zooplankton taxa (1-50 mm Equivalent Spherical Diameter) using observations with the Underwater Vision Profiler 5, a quantitative in situ imaging instrument. After classification of 466,872 organisms from more than 3,549 profiles (0-500 m) obtained between 2008 and 2019 throughout the globe, we estimated their individual biovolumes and converted them to biomass using taxa-specific conversion factors. We then associated these biomass estimates with climatologies of environmental variables (temperature, salinity, oxygen, etc.), to build habitat models using boosted regression trees. The results reveal maximal zooplankton biomass values around 60 degrees N and 55 degrees S as well as minimal values around the oceanic gyres. An increased zooplankton biomass is also predicted for the equator. Global integrated biomass (0-500 m) was estimated at 0.403 PgC. It was largely dominated by Copepoda (35.7%, mostly in polar regions), followed by Eumalacostraca (26.6%) Rhizaria (16.4%, mostly in the intertropical convergence zone). The machine learning approach used here is sensitive to the size of the training set and generates reliable predictions for abundant groups such as Copepoda (R2 approximate to 20-66%) but not for rare ones (Ctenophora, Cnidaria, R2 〈 5%). Still, this study offers a first protocol to estimate global, spatially resolved zooplankton biomass and community composition from in situ imaging observations of individual organisms. The underlying dataset covers a period of 10 years while approaches that rely on net samples utilized datasets gathered since the 1960s. Increased use of digital imaging approaches should enable us to obtain zooplankton biomass distribution estimates at basin to global scales in shorter time frames in the future.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Legal requirement in Europe asks for Ecosystem-Based Fisheries Management (EBFM) in European seas, including consideration of trophic interactions and minimization of negative impacts of fishing on food webs and ecosystem functioning. This study presents the first mass-balanced ecosystem model focused on the western Baltic Sea (WBS). Results show that heavy fishing pressure exerted on the WBS has forced top predators such as harbour porpoise and cod to cover their dietary needs by shifting from forage fish to other prey or find food outside of the model area. The model was then developed to explore the dynamics of four future fishery scenarios: (1) business as usual (BAU), (2) maximum sustainable fishing (F = FMSY), (3) half of FMSY, and (4) EBFM with F = 0.5 FMSY for forage fish and F = 0.8 FMSY for other fish. Simulations show that BAU would perpetuate low catches from depleted stocks with a high risk of extinction for harbour porpoise. In contrast, the EBFM scenario would allow the recovery of harbour porpoise, forage fish and cod with increases in catch of herring and cod. EBFM promotes ecosystem resilience to eutrophication and ocean warming, and through the rebuilding of commercial stocks increases by more than three times carbon sequestration compared to BAU. The model provides an interrelated assessment of trophic guilds in the WBS, as required by European law to assess whether European seas are in good environmental status.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: Considerable effort is being deployed to predict the impacts of climate change and anthropogenic activities on the ocean's biophysical environment, biodiversity, and natural resources to better understand how marine ecosystems and provided services to humans are likely to change and explore alternative pathways and options. We present an updated version of EcoOcean (v2), a spatial-temporal ecosystem modeling complex of the global ocean that spans food-web dynamics from primary producers to top predators. Advancements include an enhanced ability to reproduce spatial-temporal ecosystem dynamics by linking species productivity, distributions, and trophic interactions to the impacts of climate change and worldwide fisheries. The updated modeling platform is used to simulate past and future scenarios of change, where we quantify the impacts of alternative configurations of the ecological model, responses to climate-change scenarios, and the additional impacts of fishing. Climate-change scenarios are obtained from two Earth-System Models (ESMs, GFDL-ESM2M, and IPSL-CMA5-LR) and two contrasting emission pathways (RCPs 2.6 and 8.5) for historical (1950-2005) and future (2006-2100) periods. Standardized ecological indicators and biomasses of selected species groups are used to compare simulations. Results show how future ecological trajectories are sensitive to alternative configurations of EcoOcean, and yield moderate differences when looking at ecological indicators and larger differences for biomasses of species groups. Ecological trajectories are also sensitive to environmental drivers from alternative ESM outputs and RCPs, and show spatial variability and more severe changes when IPSL and RCP 8.5 are used. Under a non-fishing configuration, larger organisms show decreasing trends, while smaller organisms show mixed or increasing results. Fishing intensifies the negative effects predicted by climate change, again stronger under IPSL and RCP 8.5, which results in stronger biomass declines for species already losing under climate change, or dampened positive impacts for those increasing. Several species groups that win under climate change become losers under combined impacts, while only a few (small benthopelagic fish and cephalopods) species are projected to show positive biomass changes under cumulative impacts. EcoOcean v2 can contribute to the quantification of cumulative impact assessments of multiple stressors and of plausible ocean-based solutions to prevent, mitigate and adapt to global change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...