GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-08
    Description: Nitrous oxide (N2O), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric N2O concentrations have contributed to stratospheric ozone depletion1 and climate change2, with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do not provide a full picture of N2O emissions, owing to their omission of natural sources and limitations in methodology for attributing anthropogenic sources. Here we present a global N2O inventory that incorporates both natural and anthropogenic sources and accounts for the interaction between nitrogen additions and the biochemical processes that control N2O emissions. We use bottom-up (inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and top-down (atmospheric inversion) approaches to provide a comprehensive quantification of global N2O sources and sinks resulting from 21 natural and human sectors between 1980 and 2016. Global N2O emissions were 17.0 (minimum–maximum estimates: 12.2–23.5) teragrams of nitrogen per year (bottom-up) and 16.9 (15.9–17.7) teragrams of nitrogen per year (top-down) between 2007 and 2016. Global human-induced emissions, which are dominated by nitrogen additions to croplands, increased by 30% over the past four decades to 7.3 (4.2–11.4) teragrams of nitrogen per year. This increase was mainly responsible for the growth in the atmospheric burden. Our findings point to growing N2O emissions in emerging economies—particularly Brazil, China and India. Analysis of process-based model estimates reveals an emerging N2O–climate feedback resulting from interactions between nitrogen additions and climate change. The recent growth in N2O emissions exceeds some of the highest projected emission scenarios3,4, underscoring the urgency to mitigate N2O emissions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2023-09-11
    Description: This deliverable reports on the achievements of the EuroSea project in developing targeted indicators co-designed with demonstrators (WPs 5–7) and forecasts (WP4). For this, the indicators implemented are expressed in term of Essential Ocean/Climate Variables (EOVs/ECVs) together with their requirements. The co-development undertaken address ocean indicators for all range of scales: from the large, basin scale to the regional and local scales. Such approach as well as the proposed solution to focus, at regional/local scales, on EEZs, represent one of the innovative results of EuroSea that will help to rationalize risks assessments and guide environmental management approaches in European Seas.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-23
    Description: The European Ocean Observing and Forecasting System (EOOFS) plays a pivotal role in understanding, monitoring, forecasting, and managing the complex dynamics and resources of Europe's Seas. It serves as a critical interdisciplinary system for addressing a myriad of challenges, from climate change impacts to marine resources management. However, to ensure its continued effectiveness, it is essential to identify and address the gaps within this system and provide actionable recommendations for improvements at short- and long-term. Therefore, this document serves as a baseline that can guide the funders and supporters of the EOOFS, as well as the various stakeholders directly or indirectly related to the EOOFS, towards the gaps that hinder better monitoring and prediction of various ocean phenomena, along the ocean observing value chain. The main identified gaps are related to spatial and temporal coverage of data and products of the EOOFS, the data integration and accessibility by various types of users, the uncertainties of projections, the technological challenges, as well as to the engagement of various actors and the communication of results and services to them. The main recommendations to be taken into consideration for addressing all highlighted gaps are detailed in the report for every phenomenon and component of the ocean value chain. These recommendations are not provided just to satisfy the academic interest of the EOOFS community, however, they may have profound implications for multiple sectors and the society as a whole, if taken into consideration. This is due to the fact that the EOOFS is essential for climate change mitigation and adaptation measures, in improving the efficiency of the marine resources’ management, in enhancing the resilience of marine and coastal ecosystems as well as coastal cities and infrastructures against disasters and extreme events, for shipping and navigation safety, and for the scientific advancements and innovations of Europe in the field of marine science that serves the society. We propose a scoring approach that can evaluate the EOOFS readiness level (RL) in monitoring ocean phenomena, on a regular basis and in a systematic way. We have demonstrated the usefulness of this approach by implementing it based on our assessment and the feedback of the EOOFS community. The main results clearly show that the EOOFS has “Fitness for Purpose” readiness levels (RL 7) in the three main pillars of the value chain (Input, Process, and Output) only for one ocean phenomenon, while 83% of ocean phenomena have RLs varying from 1 (Idea) to 4 (Trial). A deeper analysis of the scoring results reflects that the EOOFS major gaps are predominantly concentrated in two of its three pillars: the coordination and observational elements (Process) and data management and information products (Output) (Figure 1). In a changing world that is affecting all aspects of European lives, it is crucial to significantly invest and support the EOOFS to better monitor and accurately predict the European Seas, and provide sustained services that can help businesses and improve the resilience of communities and resources.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Bacteriophages (phages) are ubiquitous elements in nature, but their ecology and role in animals remains little understood. Sponges represent the oldest known extant animal-microbe symbiosis and are associated with dense and diverse microbial consortia. Here we investigate the tripartite interaction between phages, bacterial symbionts, and the sponge host. We combined imaging and bioinformatics to tackle important questions on who the phage hosts are and what the replication mode and spatial distribution within the animal is. This approach led to the discovery of distinct phage-microbe infection networks in sponge versus seawater microbiomes. A new correlative in situ imaging approach (‘PhageFISH-CLEM‘) localised phages within bacterial symbiont cells, but also within phagocytotically active sponge cells. We postulate that the phagocytosis of free virions by sponge cells modulates phage-bacteria ratios and ultimately controls infection dynamics. Prediction of phage replication strategies indicated a distinct pattern, where lysogeny dominates the sponge microbiome, likely fostered by sponge host-mediated virion clearance, while lysis dominates in seawater. Collectively, this work provides new insights into phage ecology within sponges, highlighting the importance of tripartite animal-phage-bacterium interplay in holobiont functioning. We anticipate that our imaging approach will be instrumental to further understanding of viral distribution and cellular association in animal hosts.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Residual macronutrients in the surface Southern Ocean result from restricted biological utilization, caused by low wintertime irradiance, cold temperatures, and insufficient micronutrients. Variability in utilization alters oceanic CO2 sequestration at glacial-interglacial timescales. The role for insufficient iron has been examined in detail, but manganese also has an essential function in photosynthesis and dissolved concentrations in the Southern Ocean can be strongly depleted. However, clear evidence for or against manganese limitation in this system is lacking. Here we present results from ten experiments distributed across Drake Passage. We found manganese (co-)limited phytoplankton growth and macronutrient consumption in central Drake Passage, whilst iron limitation was widespread nearer the South American and Antarctic continental shelves. Spatial patterns were reconciled with the different rates and timescales for removal of each element from seawater. Our results suggest an important role for manganese in modelling Southern Ocean productivity and understanding major nutrient drawdown in glacial periods.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: The glass sponge Aphrocallistes vastus contributes to the formation of large reefs unique to the Northeast Pacific Ocean. These habitats have tremendous filtration capacity that facilitates flow of carbon between trophic levels. Their sensitivity and resilience to climate change, and thus persistence in the Anthropocene, is unknown. Here we show that ocean acidification and warming, alone and in combination have significant adverse effects on pumping capacity, contribute to irreversible tissue withdrawal, and weaken skeletal strength and stiffness of A. vastus. Within one month sponges exposed to warming (including combined treatment) ceased pumping (50–60%) and exhibited tissue withdrawal (10–25%). Thermal and acidification stress significantly reduced skeletal stiffness, and warming weakened it, potentially curtailing reef formation. Environmental data suggests conditions causing irreversible damage are possible in the field at +0.5 °C above current conditions, indicating that ongoing climate change is a serious and immediate threat to A. vastus, reef dependent communities, and potentially other glass sponges.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-09-08
    Description: The 4th Evolving and Sustaining Ocean Best Practices Workshop was held online during the period 17-30 September 2020, addressing community needs for advanced method development and implementation in ocean observations, data management and application. The proceedings for the subject workshop are provided in 2 volumes. Volume 1 addresses the meeting overview, and Volume 2 - Annexes includes the complete Working Group reports.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-09-07
    Description: Report on ASV-Network structure and roadmap Revised edition
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-09-07
    Description: Identification of local and regional impacts of oxygen, heat and pH related “Extreme Marine Events”: Ocean model data products are overlaid with existing marine biological datasets to identify sensitive areas and organism vulnerabilities.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...