GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: Predicting which non-native species will negatively impact biodiversity is a longstanding research priority. The Functional Response (FR; resource use in relation to availability) is a classical ecological concept that has been increasingly applied to quantify, assess and compare ecological impacts of non-native species. Despite this recent growth, an overview of applications and knowledge gaps across relevant contexts is currently lacking. We conducted a systematic review using a combination of terms regarding FR and invasion science to synthesise scientific studies that apply the FR approach in the field and to suggest new areas where it could have valuable applications. Trends of publications using FR in invasion science and publications about FR in general were compared through the Activity Index. Data were extracted from papers to reveal temporal, bibliographic, and geographic trends, patterns in study attributes such as type of interaction and habitat investigated, taxonomic groups used, and context-dependencies assessed. In total, 120 papers were included in the review. We identified substantial unevenness in the reporting of FRs in invasion science, despite a rapidly growing number of studies. To date, research has been geographically skewed towards North America and Europe, as well as towards predator-prey interactions in freshwater habitats. Most studies have focused on a few species of invertebrates and fishes. Species origin, life stage, environmental temperature and habitat complexity were the most frequently considered context-dependencies. We conclude that while the FR approach has thus far been narrowly applied, it has broad potential application in invasion science and can be used to test major hypotheses in this research field. © Larissa Faria et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The impacts of invasive alien species are well-known and are categorised as a leading contributor to biodiversity loss globally. However, relatively little is known about the monetary costs incurred from invasions on national economies, hampering management responses. In this study, we used published data to describe the economic cost of invasions in Southeast Asia, with a focus on Singapore – a biodiversity-rich, tropical island city state with small size, high human density and high trade volume, three factors likely to increase invasions. In this country, as well as in others in Southeast Asia, cost data were scarce, with recorded costs available for only a small fraction of the species known to be invasive. Yet, the overall available economic costs to Singapore were estimated to be ~ US$ 1.72 billion in total since 1975 (after accounting for inflation), which is approximately one tenth of the total cost recorded in all of Southeast Asia (US$ 16.9 billion). These costs, in Singapore and Southeast Asia, were mostly linked to insects in the family Culicidae (principally Aedes spp.) and associated with damage, resource loss, healthcare and control-related spending. Projections for 11 additional species known to be invasive in Singapore, but with recorded costs only from abroad, amounted to an additional US$ 893.13 million, showing the potential huge gap between recorded and actual costs (cost records remain missing for over 90% of invasive species). No costs within the database for Singapore – or for other Southeast Asian countries – were exclusively associated with proactive management, highlighting that a shortage of reporting on the costs of invasions is mirrored by a lack of investment in management. Moreover, invasion cost entries in Singapore were under-reported relative to import levels, but total costs exceeded expectations, based on land area and population size, and to a greater extent than in other Southeast Asian countries. Therefore, the evaluation and reporting of economic costs of invasions need to be improved in this region to provide efficient data-based support for mitigation and management of their impacts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: There is a strong economic interest in commercial deep‐sea mining of polymetallic nodules and therefore a need to define suitable preservation zones in the abyssal plain of the Clarion Clipperton Fracture Zone (CCZ). However, besides ship‐based multibeam data, only sparse continuous environmental information is available over large geographic scales. We test the potential of modelling meiofauna abundance and diversity on high taxonomic level on large geographic scale using a random forest approach. Ship‐based multibeam bathymetry and backscatter signal are the only sources for 11 predictor variables, as well as the modelled abundance of polymetallic nodules on the seafloor. Continuous meiofauna predictions have been combined with all available environmental variables and classified into classes representing abyssal habitats using k‐means clustering. Results show that ship‐based, multibeam‐derived predictors can be used to calculate predictive models for meiofauna distribution on a large geographic scale. Predicted distribution varies between the different meiofauna response variables. To evaluate predictions, random forest regressions were additionally computed with 1,000 replicates, integrating varying numbers of sampling positions and parallel samples per site. Higher numbers of parallel samples are especially useful to smoothen the influence of the remarkable variability of meiofauna distribution on a small scale. However, a high number of sampling positions is even more important, integrating a greater amount of natural variability of environmental conditions into the model. Synthesis and applications. Polymetallic nodule exploration contractors are required to define potential mining and preservation zones within their licence area. The biodiversity and the environment of preservation zones should be representative of the sites that will be impacted by mining. Our predicted distributions of meiofauna and the derived habitat maps are an essential first step to enable the identification of areas with similar ecological conditions. In this way, it is possible to define preservation zones not only based on expert opinion and environmental proxies but also integrating evidence from the distribution of benthic communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Invasive alien species are a well-known and pervasive threat to global biodiversity and human well-being. Despite substantial impacts of invasive alien species, quantitative syntheses of monetary costs incurred from invasions in national economies are often missing. As a consequence, adequate resource allocation for management responses to invasions has been inhibited, because cost-benefit analysis of management actions cannot be derived. To determine the economic cost of invasions in Germany, a Central European country with the 4th largest GDP in the world, we analysed published data collected from the first global assessment of economic costs of invasive alien species. Overall, economic costs were estimated at US$ 9.8 billion between 1960 and 2020, including US$ 8.9 billion in potential costs. The potential costs were mostly linked to extrapolated costs of the American bullfrog Lithobates catesbeianus, the black cherry Prunus serotina and two mammals: the muskrat Ondatra zibethicus and the American mink Neovison vison. Observed costs were driven by a broad range of taxa and mostly associated with control-related spending and resource damages or losses. We identified a considerable increase in costs relative to previous estimates and through time. Importantly, of the 2,249 alien and 181 invasive species reported in Germany, only 28 species had recorded economic costs. Therefore, total quantifications of invasive species costs here should be seen as very conservative. Our findings highlight a distinct lack of information in the openly-accessible literature and governmental sources on invasion costs at the national level, masking the highly-probable existence of much greater costs of invasions in Germany. In addition, given that invasion rates are increasing, economic costs are expected to further increase. The evaluation and reporting of economic costs need to be improved in order to deliver a basis for effective mitigation and management of invasions on national and international economies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Invasive alien species (IAS) are a leading driver of biodiversity loss worldwide, and have negative impacts on human societies. In most countries, available data on monetary costs of IAS are scarce, while being crucial for developing efficient management. In this study, we use available data collected from the first global assessment of economic costs of IAS (InvaCost) to quantify and describe the economic cost of invasions in Mexico. This description was made across a range of taxonomic, sectoral and temporal variables, and allowed us to identify knowledge gaps within these areas. Overall, costs of invasions in Mexico were estimated at US$ 5.33 billion (i.e., 109) ($MXN 100.84 billion) during the period from 1992 to 2019. Biological invasion costs were split relatively evenly between aquatic (US$ 1.16 billion; $MXN 21.95 billion) and terrestrial (US$ 1.17 billion; $MXN 22.14 billion) invaders, but semi-aquatic taxa dominated (US$ 2.99 billion; $MXN 56.57 billion), with costs from damages to resources four times higher than those from management of IAS (US$ 4.29 billion vs. US$ 1.04 billion; $MXN 81.17 billion vs $MXN 19.68 billion). The agriculture sector incurred the highest costs (US$ 1.01 billion; $MXN 19.1 billion), followed by fisheries (US$ 517.24 million; $MXN 9.79 billion), whilst most other costs simultaneously impacted mixed or unspecified sectors. When defined, costs to Mexican natural protected areas were mostly associated with management actions in terrestrial environments, and were incurred through official authorities via monitoring, control or eradication. On natural protected islands, mainly mammals were managed (i.e. rodents, cats and goats), to a total of US$ 3.99 million, while feral cows, fishes and plants were mostly managed in protected mainland areas, amounting to US$ 1.11 million in total. Pterygoplichthys sp. and Eichhornia crassipes caused the greatest reported costs in unprotected aquatic ecosystems in Mexico, and Bemisia tabaci to terrestrial systems. Although reported damages from invasions appeared to be fluctuating through time in Mexico, management spending has been increasing. These estimates, albeit conservative, underline the monetary pressure that invasions put on the Mexican economy, calling for urgent actions alongside comprehensive cost reporting in national states such as Mexico.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Shifts in microbial communities and their functioning in response to environmental change result from contemporary interspecific and intraspecific diversity changes. Interspecific changes are driven by ecological shifts in species composition, while intraspecific changes are here assumed to be dominated by evolutionary shifts in genotype frequency. Quantifying the relative contributions of interspecific and intraspecific diversity shifts to community change thus addresses the essential, yet understudied question as to how important ecological and evolutionary contributions are to total community changes. This debate is to date practically constrained by (a) a lack of studies integrating across organizational levels and (b) a mismatch between data requirements of existing partitioning metrics and the feasibility to collect such data, especially in microscopic organisms like phytoplankton. We experimentally assessed the relative ecological and evolutionary contributions to total phytoplankton community changes using a new design and validated its functionality by comparisons to established partitioning metrics. We used a community of coexisting Emiliania huxleyi and Chaetoceros affinis with initially nine genotypes each. First, we exposed the community to elevated CO2 concentration for 80 days (~50 generations) to induce interspecific and intraspecific diversity changes and a total abundance change. Second, we independently manipulated the induced interspecific and intraspecific diversity changes in an assay to quantify the corresponding ecological and evolutionary contributions to the total change. Third, we applied existing partitioning metrics to our experimental data and compared the outcomes. Total phytoplankton abundance declined to one-fifth in the high CO2 exposed community compared to ambient conditions. Consistently across all applied partitioning metrics, the abundance decline could predominantly be explained by ecological shifts and to a low extent by evolutionary changes. We discuss potential consequences of the observed community changes on ecosystem functioning. Furthermore, we explain that the low evolutionary contributions likely resulted of intraspecific diversity changes that occurred irrespectively of CO2. We discuss how the assay could be upscaled to more realistic settings, including more species and drivers. Overall, the presented calculations of eco-evolutionary contributions to phytoplankton community changes constitute another important step towards understanding future phytoplankton shifts, and eco-evolutionary dynamics in general.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The legacy of deliberate and accidental introductions of invasive alien species to Australia has had a hefty economic toll, yet quantifying the magnitude of the costs associated with direct loss and damage, as well as for management interventions, remains elusive. This is because the reliability of cost estimates and under-sampling have not been determined. We provide the first detailed analysis of the reported costs associated with invasive species to the Australian economy since the 1960s, based on the recently published InvaCost database and supplementary information, for a total of 2078 unique cost entries. Since the 1960s, Australia has spent or incurred losses totalling at least US$298.58 billion (2017 value) or AU$389.59 billion (2017 average exchange rate) from invasive species. However, this is an underestimate given that costs rise as the number of estimates increases following a power law. There was an average 1.8–6.3-fold increase in the total costs per decade since the 1970s to the present, producing estimated costs of US$6.09–57.91 billion year-1 (all costs combined) or US$225.31 million–6.84 billion year-1 (observed, highly reliable costs only). Costs arising from plant species were the highest among kingdoms (US$151.68 billion), although most of the costs were not attributable to single species. Of the identified weedy species, the costliest were annual ryegrass (Lolium rigidum), parthenium (Parthenium hysterophorus) and ragwort (Senecio jacobaea). The four costliest classes were mammals (US$48.63 billion), insects (US$11.95 billion), eudicots (US$4.10 billion) and monocots (US$1.92 billion). The three costliest species were all animals – cats (Felis catus), rabbits (Oryctolagus cuniculus) and red imported fire ants (Solenopsis invicta). Each State/Territory had a different suite of major costs by species, but with most (3–62%) costs derived from one to three species per political unit. Most (61%) of the reported costs applied to multiple environments and 73% of the total pertained to direct damage or loss compared to management costs only, with both of these findings reflecting the availability of data. Rising incursions of invasive species will continue to have substantial costs for the Australian economy, but with better investment, standardised assessments and reporting and coordinated interventions (including eradications), some of these costs could be substantially reduced.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Whilst the ecological impacts of invasion by alien species have been well documented, little is known of the economic costs incurred. The impacts of invasive alien species on the economy can be wide-ranging, from management costs, to loss of crops, to infrastructure damage. However, details on these cost estimates are still lacking, particularly at national and regional scales. In this study, we use data from the first global assessment of economic costs of invasive alien species (InvaCost), where published economic cost data were systematically gathered from scientific and grey literature. We aimed to describe the economic cost of invasions in Italy, one of the most invaded countries in Europe, with an estimate of more than 3,000 alien species. The overall economic cost of invasions to Italy between 1990 and 2020 was estimated at US$ 819.76 million (EUR€ 704.78 million). This cost was highest within terrestrial habitats, with considerably fewer costs being exclusively associated with aquatic habitats and management methods, highlighting a bias within current literature. There was also a clear indication of informational gaps, with only 15 recorded species with costs. Further, we observed a tendency towards particular taxonomic groups, with insect species accounting for the majority of cost estimates in Italy. Globally, invasion rates are not slowing down and the associated economic impact is thus expected to increase. Therefore, the evaluation and reporting of economic costs need to be improved across taxa, in order to mitigate and efficiently manage the impact of invasions on economies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Terrestrial ecosystems, owing to the presence of key socio-economic sectors such as agriculture and forestry, may be particularly economically affected by biological invasions. The present study uses a subset of the recently developed database of global economic costs of biological invasions (InvaCost) to quantify the monetary costs of biological invasions in Russia, the largest country in the world that spans two continents. From 2007 up to 2019, invasions costed the Russian economy at least US$ 51.52 billion (RUB 1.38 trillion, n = 94 cost entries), with the vast majority of these costs based on predictions or extrapolations (US$ 50.86 billion; n = 87) and, therefore, not empirically observed. Most cost entries exhibited low geographic resolution, being split between European and Asian parts of Russia (US$ 44.17 billion; n = 72). Just US$ 7.35 billion (n = 22) was attributed to the European part solely and none to the Asian part. Invasion costs were documented for 72 species and particularly insects (37 species). The empirically-observed costs, summing up to US$ 660 million (n = 7), were reported only for four species: two insects Agrilus planipennis Fairmaire and Cydalima perspectalis (Walker) and two plants Ambrosia artemisiifolia L. and Heracleum sosnowskyi Manden. The vast majority of economic costs were related to resource damages and economic losses, with very little reported expenditures on managing invasions in terrestrial ecosystems. In turn, agriculture (US$ 37.42 billion; n = 68) and forestry (US$ 14.0 billion; n = 20) were the most impacted sectors. Overall, we report burgeoning economic costs of invasions in Russia and identify major knowledge gaps, for example, concerning specific habitat types (i.e. aquatic) and management expenditures, as well as for numerous known invasive taxa with no reported economic costs (i.e. vertebrates). Given this massive, largely underestimated economic burden of invasions in Russia, our work is a call for improved reporting of costs nationally and internationally.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Invasive species have caused severe impacts on biodiversity and human society. Although the estimation of environmental impacts caused by invasive species has increased in recent years, economic losses associated with biological invasions are only sporadically estimated in space and time. In this study, we synthesized the losses incurred by invasions in Asia, based on the most comprehensive database of economic costs of invasive species worldwide, including 560 cost records for 88 invasive species in 22 countries. We also assessed the differences in economic costs across taxonomic groups, geographical regions and impacted sectors, and further identified the major gaps of current knowledge in Asia. Reported economic costs of biological invasions were estimated between 1965 and 2017, and reached a total of US$ 432.6 billion (2017 value), with dramatic increases in 2000–2002 and in 2004. The highest costs were recorded for terrestrial ectotherms, for species estimated in South Asia, and for species estimated at the country level, and were related to more than one impacted sector. Two taxonomic groups with the highest reported costs were insects and mammals, and two countries with the highest costs were India and China. Non-English data covered all of 12 taxonomic groups, whereas English data only covered six groups, highlighting the importance of considering data from non-English sources to have a more comprehensive estimation of economic costs associated with biological invasions. However, we found that the estimation of economic costs was lacking for most Asian countries and for more than 96% of introduced species in Asia. Further, the estimation is heavily biased towards insects and mammals and is very limited concerning expenditures on invasion management. To optimize the allocation of limited resources, there is an important need to better and more widely study the economic costs of invasive alien species. In this way, improved cost reporting and more collaborations between scientists and stakeholders are needed across Asia.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...