GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (58)
  • OceanRep  (127)
  • 2020-2024  (185)
  • 2021  (185)
Document type
Language
Years
Year
  • 1
    Publication Date: 2024-02-07
    Description: Food webs are central entities mediating processes and external pressures in marine ecosystems. They are essential to understand and predict ecosystem dynamics and provision of ecosystem services. Paradoxically, utilization of food web knowledge in marine environmental conservation and resource management is limited. To better understand the use of knowledge and barriers to incorporation in management, we assess its application related to the management of eutrophication, chemical contamination, fish stocks, and non-indigenous species. We focus on the Baltic, a severely impacted, but also intensely studied and actively managed semi-enclosed sea. Our assessment shows food web processes playing a central role in all four areas, but application varies strongly, from formalized integration in management decisions, to support in selecting indicators and setting threshold values, to informal knowledge explaining ecosystem dynamics and management performance. Barriers for integration are complexity of involved ecological processes and that management frameworks are not designed to handle such information. We provide a categorization of the multi-faceted uses of food web knowledge and benefits of future incorporation in management, especially moving towards ecosystem-based approaches as guiding principle in present marine policies and directives. We close with perspectives on research needs to support this move considering global and regional change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-07
    Description: Coastal water quality in urban cities is increasingly impacted by human activities such as agricultural runoff, sewage discharges, and poor sanitation. However, environmental factors controlling bacteria abundance remain poorly understood. The study employed multiple indicators to assess ten beach water qualities in Ghana during minor wet seasons. Environmental parameters (e.g. temperature, electrical conductivity, total dissolved solids) were measured in situ using the Horiba multiple parameter probe. Surface water samples were collected to measure total suspended solids, nutrients, and chlorophyll-a via standard methods and bacteria determination through membrane filtration. Environmental parameters measured showed no significant variation for the sample period. However, bacteria loads differ significantly (p = 0.024) among the beaches and influenced significantly by nitrate (55.3%, p = 0.02) and total dissolved solids (17.1%, p = 0.017). The baseline study detected an increased amount of total coliforms and faecal indicator bacteria (Escherichia coli and Enterococcus spp.) in beach waters along the coast of Ghana, suggesting faecal contamination, which can pose health risks. The mean ± standard deviations of bacteria loads in beach water are total coliforms (4.06 × 103 ± 4.16 × 103 CFU/100 mL), E. coli (7.06 × 102 ± 1.72 × 103 CFU/100 mL), and Enterococcus spp. (6.15 × 102 ± 1.75 × 103 CFU/100 mL). Evidence of pollution calls for public awareness to prevent ecological and health-related risks and policy reforms to control coastal water pollution. Future research should focus on identifying the sources of contamination in the tropical Atlantic region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    IUGG Secretariat, GFZ German Research Centre for Geosciences
    Publication Date: 2023-03-03
    Description: These short, informal newsletters, issued every month on approximately the first day of the month, are intended to keep IUGG Member National Committees informed about the activities of the IUGG Associations and actions of the IUGG Secretariat. Special issues are sometimes distributed mid-month as deemed appropriate. The content usually includes a synopsis of scientific meetings during the following three months in order to illustrate the disciplinary and geographical diversity of IUGG interests. E-Journals may be forwarded to those who will benefit from the information.
    Language: English
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-06-21
    Description: The calving of A-68, the 5,800-km2, 1-trillion-ton iceberg shed from the Larsen C Ice Shelf in July 2017, is one of over 10 significant ice-shelf loss events in the past few decades resulting from rapid warming around the Antarctic Peninsula. The rapid thinning, retreat, and collapse of ice shelves along the Antarctic Peninsula are harbingers of warming effects around the entire continent. Ice shelves cover more than 1.5 million km2 and fringe 75% of Antarctica's coastline, delineating the primary connections between the Antarctic continent, the continental ice, and the Southern Ocean. Changes in Antarctic ice shelves bring dramatic and large-scale modifications to Southern Ocean ecosystems and continental ice movements, with global-scale implications. The thinning and rate of future ice-shelf demise is notoriously unpredictable, but models suggest increased shelf-melt and calving will become more common. To date, little is known about sub-ice-shelf ecosystems, and our understanding of ecosystem change following collapse and calving is predominantly based on responsive science once collapses have occurred. In this review, we outline what is known about (a) ice-shelf melt, volume loss, retreat, and calving, (b) ice-shelf-associated ecosystems through sub-ice, sediment-core, and pre-collapse and post-collapse studies, and (c) ecological responses in pelagic, sympagic, and benthic ecosystems. We then discuss major knowledge gaps and how science might address these gaps. This article is categorized under: Climate, Ecology, and Conservation 〉 Modeling Species and Community Interactions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-10-30
    Description: 〈jats:p〉In many of the Pacific Islands, local communities have long-held cultural and spiritual attachments to the sea, in particular to species and specific marine areas, processes, habitats, islands, and natural seabed formations. Traditional knowledge, customary marine management approaches and integrated relationships between biodiversity, ecosystems and local communities promote conservation and ensure that marine benefits are reaped in a holistic, sustainable and equitable manner. However, the interaction between local traditional knowledge, contemporary scientific approaches to marine resource management and specific regulatory frameworks has often been challenging. To some extent, the value of community practices and customary law, which have provided an incentive for regional cooperation and coordination around ocean governance, is acknowledged in several legal systems in the Pacific and a number of regional and international instruments, but this important connection can be further enhanced. In this article we present a science-based overview of the marine habitats that would be affected by deep seabed mining (DSM) along with an analysis of some traditional dimensions and cultural/societal aspects of marine resource management. We then assess whether the applicable legal frameworks at different levels attach sufficient importance to these traditional dimensions and to the human and societal aspects of seabed (mineral) resource management in the region. On the basis of this analysis, we identify best practices and formulate recommendations with regard to the current regulatory frameworks and seabed resource management approaches. Indeed, the policies and practices developed in the Pacific could well serve as a suitable model elsewhere to reconcile commercial, ecological, cultural and social values within the context of deep sea mineral exploitation in addition to sustaining the Human Well-being and Sustainable Livelihoods (HWSL) of the Pacific communities and the health of the Global Ocean.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-06-13
    Description: Despite increasing recognition of the need for more diverse and equitable representation in the sciences, it is unclear whether measurable progress has been made. Here, we examine trends in authorship in coral reef science from 1,677 articles published over the past 16 years (2003–2018) and find that while representation of authors that are women (from 18 to 33%) and from non-OECD nations (from 4 to 13%) have increased over time, progress is slow in achieving more equitable representation. For example, at the current rate, it would take over two decades for female representation to reach 50%. Given that there are more coral reef non-OECD countries, at the current rate, truly equitable representation of non-OECD countries would take even longer. OECD nations also continue to dominate authorship contributions in coral reef science (89%), in research conducted in both OECD (63%) and non-OECD nations (68%). We identify systemic issues that remain prevalent in coral reef science (i.e., parachute science, gender bias) that likely contribute to observed trends. We provide recommendations to address systemic biases in research to foster a more inclusive global science community. Adoption of these recommendations will lead to more creative, innovative, and impactful scientific approaches urgently needed for coral reefs and contribute to environmental justice efforts.
    Keywords: coral reef science ; gender ; equity ; inclusion ; representation ; diversity
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: In this paper, we outline the need for a coordinated international effort toward the building of an open-access Global Ocean Oxygen Database and ATlas (GO2DAT) complying with the FAIR principles (Findable, Accessible, Interoperable, and Reusable). GO2DAT will combine data from the coastal and open ocean, as measured by the chemical Winkler titration method or by sensors (e.g., optodes, electrodes) from Eulerian and Lagrangian platforms (e.g., ships, moorings, profiling floats, gliders, ships of opportunities, marine mammals, cabled observatories). GO2DAT will further adopt a community-agreed, fully documented metadata format and a consistent quality control (QC) procedure and quality flagging (QF) system. GO2DAT will serve to support the development of advanced data analysis and biogeochemical models for improving our mapping, understanding and forecasting capabilities for ocean O2 changes and deoxygenation trends. It will offer the opportunity to develop quality-controlled data synthesis products with unprecedented spatial (vertical and horizontal) and temporal (sub-seasonal to multi-decadal) resolution. These products will support model assessment, improvement and evaluation as well as the development of climate and ocean health indicators. They will further support the decision-making processes associated with the emerging blue economy, the conservation of marine resources and their associated ecosystem services and the development of management tools required by a diverse community of users (e.g., environmental agencies, aquaculture, and fishing sectors). A better knowledge base of the spatial and temporal variations of marine O2 will improve our understanding of the ocean O2 budget, and allow better quantification of the Earth’s carbon and heat budgets. With the ever-increasing need to protect and sustainably manage ocean services, GO2DAT will allow scientists to fully harness the increasing volumes of O2 data already delivered by the expanding global ocean observing system and enable smooth incorporation of much higher quantities of data from autonomous platforms in the open ocean and coastal areas into comprehensive data products in the years to come. This paper aims at engaging the community (e.g., scientists, data managers, policy makers, service users) toward the development of GO2DAT within the framework of the UN Global Ocean Oxygen Decade (GOOD) program recently endorsed by IOC-UNESCO. A roadmap toward GO2DAT is proposed highlighting the efforts needed (e.g., in terms of human resources).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Biomolecular ocean observing and research is a rapidly evolving field that uses omics approaches to describe biodiversity at its foundational level, giving insight into the structure and function of marine ecosystems over time and space. It is an especially effective approach for investigating the marine microbiome. To mature marine microbiome research and operations within a global ocean biomolecular observing network (OBON) for the UN Decade of Ocean Science for Sustainable Development and beyond, research groups will need a system to effectively share, discover, and compare “omic” practices and protocols. While numerous informatic tools and standards exist, there is currently no global, publicly-supported platform specifically designed for sharing marine omics [or any omics] protocols across the entire value-chain from initiating a study to the publication and use of its results. Toward that goal, we propose the development of the Minimum Information for an Omic Protocol (MIOP), a community-developed guide of curated, standardized metadata tags and categories that will orient protocols in the value-chain for the facilitated, structured, and user-driven discovery of suitable protocol suites on the Ocean Best Practices System. Users can annotate their protocols with these tags, or use them as search criteria to find appropriate protocols. Implementing such a curated repository is an essential step toward establishing best practices. Sharing protocols and encouraging comparisons through this repository will be the first steps toward designing a decision tree to guide users to community endorsed best practices.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: The trace metal iron is considered to be the nutrient that limits marine primary production in one third of the global surface ocean (Martin, 1990; Boyd et al., 2007; Moore et al., 2013). It is also the nutrient that maintains future ocean fertility due to its irreplaceable role in the process of nitrogen fixation, which adds “new” nitrogen (another nutrient for phytoplankton) to the surface ocean (Raven, 1988; Kustka et al., 2003b; Zehr and Capone, 2020). Due to iron’s importance, it is not surprising that the demand for incorporating iron into global biogeochemical models is high. However, including iron in an earth system model has been shown to have no clear benefits with respect to model misfit against observational data (Nickelsen et al., 2015) . How smart is it then to introduce iron models into global biogeochemical models, when the benefits are not clearly identifiable? Especially, when the iron models perform poorly at reproducing observed iron patterns in the ocean (Tagliabue et al., 2016). The poor performance of iron models, coupled with their failure to improve biogeochemical tracer representation of the ocean, inspired this additional effort to identify the advantages of including iron in a global biogeochemical model, both for the preindustrial state and under conditions of a changing climate. The working hypothesis was that the relatively poor performance of iron models might come from inadequate model calibration. A first sensitivity study on biogeochemical model parameter values was conducted in order to identify key parameters for model calibration. It was found that while some of the parameters influence simulated nitrogen, phosphorus, and oxygen concentrations, few parameters influence simulated iron concentrations. This suggests that our modelling skill of the iron cycle is still limited and/or that the observational data base is insufficient for comprehensive model calibration so far. Thus it was decided not to include iron data in further model calibration. A model calibration framework (Kriest et al., 2017) was next applied to a hierarchy of global models with different implementations of iron; one without iron, one with prescribed iron concentrations, and another one with a dynamic iron cycle. Using calibration against global data sets of nitrogen, phosphorus, and oxygen, the misfit of each model was pushed to its minimum. It was found that under an assumed preindustrial steady state, the calibrated model with a full dynamic iron cycle has the lowest model misfit against observations (thus confirming the working hypothesis). It was also found that the calibrated model with a fully dynamic iron cycle has 50% less net primary production (which is closer to empirical estimations) compared to the calibrated model without iron. Finally, transient simulations for all calibrated models were integrated from their pre- industrial state until the end of the 21st century using an atmospheric CO2 concentration pathway consistent with a ’business-as-usual’ CO2 emission scenario. It was found that nitrogen fixation trends diverge among models. This divergence is caused by whether iron limits the productivity of the upwelling regions, e.g. in the eastern tropical Pacific. The export production in the eastern tropical Pacific (and other tropical upwelling regions) reacts differently to warming, depending on whether iron is a limiting nutrient. These different responses trigger a divergent chain of downstream responses that affect nitrogen fixation across the tropical oligotrophic regions in the model. Through the comparison between calibrated models, this thesis quantifies the advantages of including iron in a global biogeochemistry model and reveals how important iron is for future nitrogen fixation trends. It furthermore illustrates the interconnection between tropical upwelling and oligotrophic regions.
    Type: Thesis , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: The UN Decade of Ocean Science for Sustainable Development (Ocean Decade) challenges marine science to better inform and stimulate social and economic development while conserving marine ecosystems. To achieve these objectives, we must make our diverse methodologies more comparable and interoperable, expanding global participation and foster capacity development in ocean science through a new and coherent approach to best practice development. We present perspectives on this issue gleaned from the ongoing development of the UNESCO Intergovernmental Oceanographic Commission (IOC) Ocean Best Practices System (OBPS). The OBPS is collaborating with individuals and programs around the world to transform the way ocean methodologies are managed, in strong alignment with the outcomes envisioned for the Ocean Decade. However, significant challenges remain, including: (1) the haphazard management of methodologies across their lifecycle, (2) the ambiguous endorsement of what is "best" and when and where one method may be applicable vs. another, and (3) the inconsistent access to methodological knowledge across disciplines and cultures. To help address these challenges, we recommend that sponsors and leaders in ocean science and education promote consistent documentation and convergence of methodologies to: create and improve context-dependent best practices; incorporate contextualized best practices into Ocean Decade Actions; clarify who endorses which method and why; create a global network of complementary ocean practices systems; and ensure broader consistency and flexibility in international capacity development.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...