GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • OceanRep  (9)
  • 2020-2022  (9)
  • 2010-2014
  • 2021  (9)
  • 1
    Publication Date: 2021-01-13
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  (Bachelor thesis), Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 42 pp
    Publication Date: 2021-12-22
    Description: Seagrass is a foundation species within shallow water ecosystems because it provides habitat and food and thereby supports biodiversity. It has a function as atmospheric CO2 storage and improves the water quality by filtering nutrients (Greiner et al. 2013). Currently, seagrass meadows are facing multiple challenges such as ocean warming, reduced light caused by increasing nutrient input and more frequent disturbance events or direct anthropogenic impact (Unsworth et al. 2019). All these factors affect the performance of seagrass and thereby impair the ecosystem services seagrass meadows provide. This thesis represents a systematic review and meta-analysis of the physiological effects of temperature change on seagrass to provide a better understanding of the effect of rising temperatures on seagrass meadows worldwide. In this thesis, 766 papers were reviewed and a subsequent meta-analysis of 43 papers including 407 control-treatment temperature combinations matching the inclusion criteria were conducted. The log response ratio (lnR) was used for calculating the effect sizes, because it is more intuitive to interpret. Hedges’ g was further used to verify the results. It was tested for effects of the physiological parameters measured, the treatment type, the temperature direction, the experiment duration, the control temperature, latitude and longitude of the source population and the genus on relative seagrass performance (lnR). The key results of the meta-analysis showed that (I) plant physiological performance was reduced by an average of 39% by temperature change across all studies; (II) per 1°C experimental ocean warming a reduction in seagrass performance of 11% was observed; (III) the measured performance parameters (growth, biomass, photosynthesis and survival) showed differential susceptibility to warming, with survival being most affected and photosynthesis least affected; (IV) seagrass genera did not differ significantly in their response to experimental ocean warming but varied between locations. There was a strong geographic bias in this meta-analysis since most case studies were conducted in developed countries including Europe, the US and Australia. Thus, many species were underrepresented while also some climate conditions were not covered. Further, it was also not possible to make a statement about the recovery after experimental temperature stress had ceased, as there were too few studies focusing on recovery. Altogether, this thesis identified two profound knowledge gaps, which should be addressed by future studies. In conclusion, more frequent and intense heat waves are an increasing threat to seagrass meadows in the future. As seagrass provides important ecological services, it needs to be protected. It is particularly striking that every degree Celsius of temperature change matters for seagrass as it means a reduction in physiological and morphological performance, which is another indication that global warming should be kept below 2 degrees Celsius
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GEOMAR
    In:  [Proceedings]
    Publication Date: 2021-03-26
    Description: Modern digital scientific workflows - often implying Big Data challenges - require data infrastructures and innovative data science methods across disciplines and technologies. Diverse activities within and outside HGF deal with these challenges, on all levels. The series of Data Science Symposia fosters knowledge exchange and collaboration in the Earth and Environment research community.
    Type: Proceedings , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-13
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    GEOMAR Helmholtz Centre for Ocean Research Kiel
    In:  Alkor-Berichte, AL561 . GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, 34 pp.
    Publication Date: 2021-11-23
    Description: The AL561 cruise was conducted in the framework of the project APOC (“Anthropogenic impacts on Particulate Organic Carbon cycling in the North Sea”). This collaborative project between GEOMAR, AWI, HEREON, UHH, and BUND is to understand how particulate organic carbon (POC) cycling contributes to carbon sequestration in the North Sea and how this ecosystem service is compromised and interlinked with global change and a range of human pressures include fisheries (pelagic fisheries, bottom trawling), resource extraction (sand mining), sediment management (dredging and disposal of dredged sediments) and eutrophication. The main aim of the sampling activity during AL561 cruise was to recover undisturbed sediment from high accumulation sites in the Skagerrak/Kattegat and to subsample sediment/porewater at high resolution in order to investigate sedimentation transport processes, origin of sediment/POC and mineralization processes over the last 100- 200 years. Moreover, the actual processes of sedimentation and POC degradation in the water column and benthic layer will be addressed by sampling with CTD and Lander devices. In total 9 hydroacoustic surveys (59 profiles), 4 Gravity Corer, 7 Multicorer, 3 Lander and 4 CTD stations were successfully conducted during the AL561 cruise.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-08
    Description: Submarine landslides pose a hazard to coastal communities due to the tsunamis they can generate, and can damage critical seafloor infrastructure, such as the network of cables that underpin global data transfer and communications. These mass movements can be orders of magnitude larger than their onshore equivalents and are found on all of the world’s continental margins; from coastal zones to hadal trenches. Despite their prevalence, and importance to society, offshore monitoring studies have been limited by the largely unpredictable occurrence of submarine landslide and the need to cover large regions of extensive continental margins. Recent subsea monitoring has provided new insights into the preconditioning and run-out of submarine landslides using active geophysical techniques, but these tools only measure a very small spatial footprint, and are power and memory intensive, thus limiting long duration monitoring campaigns. Most landslide events therefore remain entirely unrecorded. Here we first show how passive acoustic and seismologic techniques can record acoustic emissions and ground motions created by terrestrial landslides. We then show how this terrestrial-focused research has catalysed advances in the detection and characterisation of submarine landslides, using both onshore and offshore networks of broadband seismometers, hydrophones and geophones. We then discuss some of the new insights into submarine landslide preconditioning, timing, location, velocity and their down-slope evolution that is arising from these advances. We finally outline some of the outstanding challenges, in particular emphasising the need for calibration of seismic and acoustic signals generated by submarine landslides and their run-out. Once confidence can be enhanced in submarine landslide signal detection and interpretation, passive seismic and acoustic sensing has strong potential to enable more complete hazard catalogues to be built, and opens the door to emerging techniques (such as fibre-optic sensing), to fill key, but outstanding, knowledge gaps concerning these important underwater phenomena.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    facet.materialart.
    Unknown
    OceanNETs
    In:  OceanNets Deliverable, D2.7 . OceanNETs, Kiel, Germany, 25 pp.
    Publication Date: 2021-12-09
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-06-09
    Description: Seabed telecommunication cables can be damaged or broken by powerful seafloor flows of sediment (called turbidity currents), which may runout for hundreds of kilometres into the deep ocean. These flows have the potential to affect multiple cables near-simultaneously over very large areas, so it is more challenging to reroute traffic or repair the cables. However, cable-breaking turbidity currents that runout into the deep ocean were poorly understood, and thus hard to predict, as there were no detailed measurements from these flows in action. Here we present the first detailed measurements from such cable-breaking flows, using moored-sensors along the Congo Submarine Canyon offshore West Africa. These turbidity currents include the furthest travelled sediment flow (of any type) yet measured in action on Earth. The SAT-3 (South Atlantic 3) and WACs (West Africa Cable System) cables were broken on 14-16th January 2020 by a turbidity current that accelerated from 5 to 8 m/s, as it travelled for 〉 1,130 km from river estuary to deep-sea, although a branch of the WACs cable located closer to shore survived. The SAT-3 cable was broken again on 9th March 2020 due to a second turbidity current, this time slowing data transfer during regional coronavirus (COVID-2019) lockdown. These cables had not experienced faults due to natural causes in the previous 19 years. The two cable-breaking flows are associated with a major flood along the Congo River, which produced the highest discharge (72,000m3) recorded at Kinshasa since the early 1960s, and this flood peak reached the river mouth on ~30th December 2019. However, the cable-breaking turbidity currents occurred 2-10 weeks after the flood peak and coincided with unusually large spring tides. Thus, the large cable-breaking flows in 2020 are caused by a combination of a major river flood and tides; and this can provide a basis for predicting the likelihood of future cable-breaking flows. Older (1883-1937) cable breaks in the Congo Submarine Canyon occurred in temporal clusters, sometimes after one or more years of high river discharge. Increased hazards to cables may therefore persist for several years after one or more river floods, which cumulatively prime the river mouth for cable-breaking flows. The 14-16th January 2020 flow accelerated from 5 to 8 m/s with distance, such that the closest cable to shore did not break, whilst two cables further from shore were broken. The largest turbidity currents may increase in power with distance from shore, and are more likely to overspill from their channel in distal sites. Thus, for the largest and most infrequent turbidity currents, locations further from shore can face lower-frequency but higher-magnitude hazards, which may need to be factored into cable route planning. Observations off Taiwan in 2006-2015, and the 2020 events in the Congo Submarine Canyon, show that although multiple cables were broken by fast (〉 5 m/s) turbidity currents, some intervening cables survived. This indicates that local factors can determine whether a cable breaks or not. Repeat seabed surveys of the canyon-channel floor show that erosion during turbidity currents is patchy and concentrated around steeper areas (knickpoints) in the canyon profile, which may explain why only some cables break. If possible, cables should be routed away from knickpoints, also avoiding locations just up-canyon from knickpoints, as knickpoints move up-slope. This study provides key new insights into long runout cable-breaking turbidity currents, and the hazards they pose to seafloor telecommunication cables.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...