GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • OceanRep  (24)
  • OceanRep: Article in a Scientific Journal - peer-reviewed  (24)
  • Pensoft  (15)
  • Regional Euro-Asian Biological Invasions Centre - REABIC  (9)
Document type
  • Journals
  • OceanRep  (24)
Source
Years
  • 1
    Publication Date: 2015-12-16
    Description: The round goby, Neogobius melanostomus (Pallas, 1814), is one of the most invasive non-indigenous species in the Baltic Sea. It dominates coastal fisheries in some localities and is frequently found in offshore pelagic catches. This paper identifies management issues and suggests actions to be considered for post-invasion management. Priority should be given to the establishment of a coordinated pan-Baltic monitoring programme and associated data storage and exchange, as well as the compilation of landing statistics of the round goby in commercial and recreational fisheries. While eradication is unrealistic, population control that leads to minimising the risk of transfer to yet uncolonised areas in the Baltic Sea and adjacent waterbodies is feasible. This should comprise the requirement that the species be landed in commercial fishery bycatch, the management of ships’ ballast water and sediments, and hull fouling of inland and sea-going vessels, including recreational boats. Extensive involvement of stakeholders is crucial at all phases of the management process.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Predicting which non-native species will negatively impact biodiversity is a longstanding research priority. The Functional Response (FR; resource use in relation to availability) is a classical ecological concept that has been increasingly applied to quantify, assess and compare ecological impacts of non-native species. Despite this recent growth, an overview of applications and knowledge gaps across relevant contexts is currently lacking. We conducted a systematic review using a combination of terms regarding FR and invasion science to synthesise scientific studies that apply the FR approach in the field and to suggest new areas where it could have valuable applications. Trends of publications using FR in invasion science and publications about FR in general were compared through the Activity Index. Data were extracted from papers to reveal temporal, bibliographic, and geographic trends, patterns in study attributes such as type of interaction and habitat investigated, taxonomic groups used, and context-dependencies assessed. In total, 120 papers were included in the review. We identified substantial unevenness in the reporting of FRs in invasion science, despite a rapidly growing number of studies. To date, research has been geographically skewed towards North America and Europe, as well as towards predator-prey interactions in freshwater habitats. Most studies have focused on a few species of invertebrates and fishes. Species origin, life stage, environmental temperature and habitat complexity were the most frequently considered context-dependencies. We conclude that while the FR approach has thus far been narrowly applied, it has broad potential application in invasion science and can be used to test major hypotheses in this research field. © Larissa Faria et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: Introduced Marine Pests (IMP, = non-indigenous marine species) prevention, early detection and risk-based management strategies have become the priority for biosecurity operations worldwide, in recognition of the fact that, once established, the effective management of marine pests can rapidly become cost prohibitive or impractical. In Western Australia (WA), biosecurity management is guided by the " Western Australian Prevention List for Introduced Marine Pests " which is a policy tool that details species or genera as being of high risk to the region. This list forms the basis of management efforts to prevent introduction of these species, monitoring efforts to detect them at an early stage, and rapid response should they be detected. It is therefore essential that the species listed can be rapid and confidently identified and discriminated from native species by a range of government and industry stakeholders. Recognising that identification of these species requires very specialist expertise which may be in short supply and not readily accessible in a regulatory environment, and the fact that much publicly available data is not verifiable or suitable for regulatory enforcement, the WA government commissioned the current project to collate a reference collection of these marine pest specimens. In this work, we thus established collaboration with researchers worldwide in order to source representative specimens of the species listed. Our main objective was to build a reference collection of taxonomically vouchered specimens and subsequently to generate species-specific DNA barcodes suited to supporting their future identification. To date, we were able to obtain specimens of 75 species (representative of all but four of the pests listed) which have been identified by experts and placed with the WA Government Department of Fisheries and, where possible, in accessible museums and institutions in Australasia. The reference collection supports the fast and reliable taxonomic and molecular identification of marine pests in WA and constitutes a valuable resource for training of stakeholders with interest in IMP recognition in Australia. The reference collection is also useful in supporting the development of a variety of DNA-based detection strategies such as real-time PCR and metabarcoding of complex environmental samples (e.g. biofouling communities). The Prevention List is under regular review to ensure its continued relevance and that it remains evidence and risk-based. Similarly, its associated reference collection also remains to some extent a work in progress. In recognition of this fact, this report seeks to provide details of this continually evolving information repository publicly available to the biosecurity management community worldwide
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-30
    Description: An as-yet-undescribed, non-indigenous polychaete species was found at very high densities in the eastern part of the Baltic Sea in Estonia in 2012. The species belongs to the sabellid genus Laonome Malmgren, 1866, but it could not be assigned to any of the previously described species. To date, the species has established a stable population after surviving a notably cold winter (2012/2013). To study the local distribution and abundance of the species, a spatial grid with some stations repeated seasonally and interannually was sampled in a quantitative manner. Based of the survey data and available environmental data, the variables that contributed significantly to explaining variation in the abundance of the polychaete were determined using the Boosted Regression Trees modelling approach. Molecular barcodes to characterize the identity of the species were also established. The abundance of Laonome sp. exhibited strong seasonal variation, peaking between July and November. Besides seasonality, the quantity of decomposed microalgae in the sediment and wave exposure best explained the variation in abundance. Laonome sp. is now well-established in the Baltic Sea and locally reached high densities in low salinity areas. This non-indigenous polychaete may potentially modify sediment morphology and chemistry and disrupt the natural infaunal communities. Laonome sp. could displace or even completely eliminate some species currently present in the study area and beyond if it spreads; however, it could also facilitate currently-present species through the provision of alternative substrate and/or food. Given its persistence and high abundance in Pärnu Bay, colonization of other low-salinity areas of the Baltic Sea can be expected.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: The impacts of invasive alien species are well-known and are categorised as a leading contributor to biodiversity loss globally. However, relatively little is known about the monetary costs incurred from invasions on national economies, hampering management responses. In this study, we used published data to describe the economic cost of invasions in Southeast Asia, with a focus on Singapore – a biodiversity-rich, tropical island city state with small size, high human density and high trade volume, three factors likely to increase invasions. In this country, as well as in others in Southeast Asia, cost data were scarce, with recorded costs available for only a small fraction of the species known to be invasive. Yet, the overall available economic costs to Singapore were estimated to be ~ US$ 1.72 billion in total since 1975 (after accounting for inflation), which is approximately one tenth of the total cost recorded in all of Southeast Asia (US$ 16.9 billion). These costs, in Singapore and Southeast Asia, were mostly linked to insects in the family Culicidae (principally Aedes spp.) and associated with damage, resource loss, healthcare and control-related spending. Projections for 11 additional species known to be invasive in Singapore, but with recorded costs only from abroad, amounted to an additional US$ 893.13 million, showing the potential huge gap between recorded and actual costs (cost records remain missing for over 90% of invasive species). No costs within the database for Singapore – or for other Southeast Asian countries – were exclusively associated with proactive management, highlighting that a shortage of reporting on the costs of invasions is mirrored by a lack of investment in management. Moreover, invasion cost entries in Singapore were under-reported relative to import levels, but total costs exceeded expectations, based on land area and population size, and to a greater extent than in other Southeast Asian countries. Therefore, the evaluation and reporting of economic costs of invasions need to be improved in this region to provide efficient data-based support for mitigation and management of their impacts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Invasive alien species are a well-known and pervasive threat to global biodiversity and human well-being. Despite substantial impacts of invasive alien species, quantitative syntheses of monetary costs incurred from invasions in national economies are often missing. As a consequence, adequate resource allocation for management responses to invasions has been inhibited, because cost-benefit analysis of management actions cannot be derived. To determine the economic cost of invasions in Germany, a Central European country with the 4th largest GDP in the world, we analysed published data collected from the first global assessment of economic costs of invasive alien species. Overall, economic costs were estimated at US$ 9.8 billion between 1960 and 2020, including US$ 8.9 billion in potential costs. The potential costs were mostly linked to extrapolated costs of the American bullfrog Lithobates catesbeianus, the black cherry Prunus serotina and two mammals: the muskrat Ondatra zibethicus and the American mink Neovison vison. Observed costs were driven by a broad range of taxa and mostly associated with control-related spending and resource damages or losses. We identified a considerable increase in costs relative to previous estimates and through time. Importantly, of the 2,249 alien and 181 invasive species reported in Germany, only 28 species had recorded economic costs. Therefore, total quantifications of invasive species costs here should be seen as very conservative. Our findings highlight a distinct lack of information in the openly-accessible literature and governmental sources on invasion costs at the national level, masking the highly-probable existence of much greater costs of invasions in Germany. In addition, given that invasion rates are increasing, economic costs are expected to further increase. The evaluation and reporting of economic costs need to be improved in order to deliver a basis for effective mitigation and management of invasions on national and international economies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Invasive alien species (IAS) are a leading driver of biodiversity loss worldwide, and have negative impacts on human societies. In most countries, available data on monetary costs of IAS are scarce, while being crucial for developing efficient management. In this study, we use available data collected from the first global assessment of economic costs of IAS (InvaCost) to quantify and describe the economic cost of invasions in Mexico. This description was made across a range of taxonomic, sectoral and temporal variables, and allowed us to identify knowledge gaps within these areas. Overall, costs of invasions in Mexico were estimated at US$ 5.33 billion (i.e., 109) ($MXN 100.84 billion) during the period from 1992 to 2019. Biological invasion costs were split relatively evenly between aquatic (US$ 1.16 billion; $MXN 21.95 billion) and terrestrial (US$ 1.17 billion; $MXN 22.14 billion) invaders, but semi-aquatic taxa dominated (US$ 2.99 billion; $MXN 56.57 billion), with costs from damages to resources four times higher than those from management of IAS (US$ 4.29 billion vs. US$ 1.04 billion; $MXN 81.17 billion vs $MXN 19.68 billion). The agriculture sector incurred the highest costs (US$ 1.01 billion; $MXN 19.1 billion), followed by fisheries (US$ 517.24 million; $MXN 9.79 billion), whilst most other costs simultaneously impacted mixed or unspecified sectors. When defined, costs to Mexican natural protected areas were mostly associated with management actions in terrestrial environments, and were incurred through official authorities via monitoring, control or eradication. On natural protected islands, mainly mammals were managed (i.e. rodents, cats and goats), to a total of US$ 3.99 million, while feral cows, fishes and plants were mostly managed in protected mainland areas, amounting to US$ 1.11 million in total. Pterygoplichthys sp. and Eichhornia crassipes caused the greatest reported costs in unprotected aquatic ecosystems in Mexico, and Bemisia tabaci to terrestrial systems. Although reported damages from invasions appeared to be fluctuating through time in Mexico, management spending has been increasing. These estimates, albeit conservative, underline the monetary pressure that invasions put on the Mexican economy, calling for urgent actions alongside comprehensive cost reporting in national states such as Mexico.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Regional Euro-Asian Biological Invasions Centre - REABIC
    In:  Management of Biological Invasions, 5 (3). pp. 245-253.
    Publication Date: 2014-10-29
    Description: Biological invasions by non-indigenous species are considered a leading threat to biodiversity, with prevention being a key management strategy. Consequently, numerous commercial ballast water treatment systems have been, or are being, developed to prevent future aquatic invasions. However, most treatment systems are being designed for the many vessels undertaking long transoceanic voyages in marine waters rather than the relatively few vessels operating on short voyages in freshwater, such as those in the Laurentian Great Lakes. Here we conduct testing of the biological efficacy of a 40 µm ballast water filtration unit through shipboard trials. We test the hypotheses that i) filtration will significantly reduce abundance of zooplankton greater than 50 µm in size but not phytoplankton 10 to 50 µm in size; ii) filtration will reduce zooplankton abundances in ballast water below International Maritime Organization discharge standards, but not those of phytoplankton; and iii) filtration will alter the community composition of zooplankton, non-randomly reducing invasion risk of larger taxa. During the summer of 2012, three shipboard trials were conducted. Ballast water samples were collected using a before-after experimental design. Our study showed that filtration significantly reduced abundance of copepods and cladocerans, but not of juvenile dreissenid veligers and rotifers. Contrary to our expectation, phytoplankton densities were also significantly lower after the treatment. Overall, ballast water treated during our tests would not meet proposed international discharge standards. Filtration altered relative abundance of zooplankton, but did not reduce introduction risk of any taxonomic group due to the small juvenile stages and dormant eggs which passed through the treatment. While we do not rule out filtration as a ballast water treatment option for zooplankton in the future, our tests indicate further development is required for meaningful reduction of invasion risk.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-08-08
    Description: The Laurentian Great Lakes have been successfully invaded by at least 182 nonindigenous species. Here we report on two new species, water hyacinth Eichhornia crassipes and water lettuce Pistia stratiotes, that were found at a number of locations in Lake St. Clair and Detroit River during autumn 2010. Both species are commonly sold in the water garden and aquarium trade in southern Ontario and elsewhere. While it is not clear whether these species are established or can establish in the Great Lakes, the historic assumption that neither of these subtropical to tropical plants pose an invasion risk must be questioned in the light of changing environmental conditions associated with climate warming that may render Great Lakes’ habitats more suitable for these species and increase the likelihood of their successful establishment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: The legacy of deliberate and accidental introductions of invasive alien species to Australia has had a hefty economic toll, yet quantifying the magnitude of the costs associated with direct loss and damage, as well as for management interventions, remains elusive. This is because the reliability of cost estimates and under-sampling have not been determined. We provide the first detailed analysis of the reported costs associated with invasive species to the Australian economy since the 1960s, based on the recently published InvaCost database and supplementary information, for a total of 2078 unique cost entries. Since the 1960s, Australia has spent or incurred losses totalling at least US$298.58 billion (2017 value) or AU$389.59 billion (2017 average exchange rate) from invasive species. However, this is an underestimate given that costs rise as the number of estimates increases following a power law. There was an average 1.8–6.3-fold increase in the total costs per decade since the 1970s to the present, producing estimated costs of US$6.09–57.91 billion year-1 (all costs combined) or US$225.31 million–6.84 billion year-1 (observed, highly reliable costs only). Costs arising from plant species were the highest among kingdoms (US$151.68 billion), although most of the costs were not attributable to single species. Of the identified weedy species, the costliest were annual ryegrass (Lolium rigidum), parthenium (Parthenium hysterophorus) and ragwort (Senecio jacobaea). The four costliest classes were mammals (US$48.63 billion), insects (US$11.95 billion), eudicots (US$4.10 billion) and monocots (US$1.92 billion). The three costliest species were all animals – cats (Felis catus), rabbits (Oryctolagus cuniculus) and red imported fire ants (Solenopsis invicta). Each State/Territory had a different suite of major costs by species, but with most (3–62%) costs derived from one to three species per political unit. Most (61%) of the reported costs applied to multiple environments and 73% of the total pertained to direct damage or loss compared to management costs only, with both of these findings reflecting the availability of data. Rising incursions of invasive species will continue to have substantial costs for the Australian economy, but with better investment, standardised assessments and reporting and coordinated interventions (including eradications), some of these costs could be substantially reduced.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...